IDMPlus.java
package org.opentrafficsim.core.gtu.following;
import org.opentrafficsim.core.unit.AccelerationUnit;
import org.opentrafficsim.core.unit.LengthUnit;
import org.opentrafficsim.core.unit.SpeedUnit;
import org.opentrafficsim.core.unit.TimeUnit;
import org.opentrafficsim.core.value.conversions.Calc;
import org.opentrafficsim.core.value.vdouble.scalar.DoubleScalar;
import org.opentrafficsim.core.value.vdouble.scalar.MutableDoubleScalar;
/**
* IDMPlus implements the <i>Integrated Lane Change Model with Relaxation and Synchronization</i> as published by Wouter
* J. Schakel, Bart van Arem, Member, IEEE, and Bart D. Netten. 2012. <br>
* There are two nasty type setting errors in equation 7 in this published version of the paper. Both times an equals
* sign (<cite>=</cite>) after <cite>a<sub>gain</sub></cite> should <b>not</b> be there.
* <p>
* Copyright (c) 2013-2014 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights
* reserved. <br>
* BSD-style license. See <a href="http://opentrafficsim.org/node/13">OpenTrafficSim License</a>.
* <p>
* @version Jul 4, 2014 <br>
* @author <a href="http://www.tudelft.nl/pknoppers">Peter Knoppers</a>
*/
public class IDMPlus extends AbstractGTUFollowingModel
{
/** Preferred net longitudinal distance when stopped [m]. */
private final DoubleScalar.Rel<LengthUnit> s0;
/** Longitudinal acceleration [m/s^2]. */
private final DoubleScalar.Abs<AccelerationUnit> a;
/** Longitudinal deceleration [m/s^2]. (Should be a positive value even though it is a <b>de</b>celeration.) */
private final DoubleScalar.Abs<AccelerationUnit> b;
/** Safe time headway. */
private final DoubleScalar.Rel<TimeUnit> tSafe;
/**
* Mean speed limit adherence (1.0: mean free speed equals the speed limit; 1.1: mean free speed equals 110% of the
* speed limit, etc.).
*/
private final double delta;
/**
* Time slot size used by IDMPlus by (not defined in the paper, but 0.5s is a reasonable trade-off between
* computational speed and accuracy).
*/
private final DoubleScalar.Rel<TimeUnit> stepSize = new DoubleScalar.Rel<TimeUnit>(0.5, TimeUnit.SECOND);
/**
* Construct a new IDM+ car following model with reasonable values (reasonable for passenger cars). <br>
* These values are from <b>Integrated Lane Change Model with Relaxation and Synchronization</b> by Wouter J.
* Schakel, Victor L. Knoop, and Bart van Arem, published in Transportation Research Record: Journal of the
* Transportation Research Board, No. 2316, Transportation Research Board of the National Academies, Washington,
* D.C., 2012, pp. 47–57.
*/
public IDMPlus()
{
this.a = new DoubleScalar.Abs<AccelerationUnit>(1.56, AccelerationUnit.METER_PER_SECOND_2);
this.b = new DoubleScalar.Abs<AccelerationUnit>(2.09, AccelerationUnit.METER_PER_SECOND_2);
this.s0 = new DoubleScalar.Rel<LengthUnit>(3, LengthUnit.METER);
this.tSafe = new DoubleScalar.Rel<TimeUnit>(1.2, TimeUnit.SECOND);
this.delta = 1d;
}
/**
* Construct a new IDMPlus car following model.
* @param a DoubleScalar.Abs<AccelerationUnit>; the maximum acceleration of a stationary vehicle (normal value
* is 1 m/s/s)
* @param b DoubleScalar.Abs<AccelerationUnit>; the maximum deemed-safe deceleration (this is a positive
* value)
* @param s0 DoubleScalar.Rel<LengthUnit>; the minimum stationary headway
* @param tSafe DoubleScalar.Rel<TimeUnit>; the minimum time-headway
* @param delta double; the speed limit adherence (1.0; mean free speed equals the speed limit; 1.1: mean free speed
* equals 110% of the speed limit; etc.)
*/
public IDMPlus(final DoubleScalar.Abs<AccelerationUnit> a, final DoubleScalar.Abs<AccelerationUnit> b,
final DoubleScalar.Rel<LengthUnit> s0, final DoubleScalar.Rel<TimeUnit> tSafe, final double delta)
{
this.a = a;
this.b = b;
this.s0 = s0;
this.tSafe = tSafe;
this.delta = delta;
}
/**
* Desired speed (taking into account the urge to drive a little faster or slower than the posted speed limit).
* @param speedLimit DoubleScalarAbs<SpeedUnit>; the speed limit
* @param followerMaximumSpeed DoubleScalar.Abs<SpeedUnit>; the maximum speed that the follower can drive
* @return DoubleScalarRel<SpeedUnit>; the desired speed
*/
private DoubleScalar.Rel<SpeedUnit> vDes(final DoubleScalar.Abs<SpeedUnit> speedLimit,
final DoubleScalar.Abs<SpeedUnit> followerMaximumSpeed)
{
return new DoubleScalar.Rel<SpeedUnit>(Math.min(this.delta * speedLimit.getSI(), followerMaximumSpeed.getSI()),
SpeedUnit.METER_PER_SECOND);
}
/** {@inheritDoc} */
public final DoubleScalar.Abs<AccelerationUnit> computeAcceleration(
final DoubleScalar.Abs<SpeedUnit> followerSpeed, final DoubleScalar.Abs<SpeedUnit> followerMaximumSpeed,
final DoubleScalar.Abs<SpeedUnit> leaderSpeed, final DoubleScalar.Rel<LengthUnit> headway,
final DoubleScalar.Abs<SpeedUnit> speedLimit)
{
double leftComponent = 1 - Math.pow(followerSpeed.getSI() / vDes(speedLimit, followerMaximumSpeed).getSI(), 4);
if (Double.isNaN(leftComponent))
{
leftComponent = 0;
}
// if (leftComponent < 0)
// {
// System.out.println("leftComponent is " + leftComponent);
// }
MutableDoubleScalar.Rel<AccelerationUnit> logWeightedAccelerationTimes2 =
new MutableDoubleScalar.Rel<AccelerationUnit>(Math.sqrt(this.a.getSI() * this.b.getSI()),
AccelerationUnit.METER_PER_SECOND_2);
logWeightedAccelerationTimes2.multiply(2); // don't forget the times 2
DoubleScalar.Rel<SpeedUnit> dV = DoubleScalar.minus(followerSpeed, leaderSpeed).immutable();
// System.out.println("dV is " + dV);
// System.out.println(" v is " + gtu.speed(thisEvaluationTime));
// System.out.println("s0 is " + this.s0);
DoubleScalar.Rel<LengthUnit> sStar =
DoubleScalar.plus(
DoubleScalar.plus(this.s0, Calc.speedTimesTime(followerSpeed, this.tSafe)).immutable(),
Calc.speedTimesTime(
dV,
Calc.speedDividedByAcceleration(followerSpeed,
logWeightedAccelerationTimes2.immutable()))).immutable();
if (sStar.getSI() < 0)
{
// Negative value should be treated as 0? This is NOT in the LMRS paper
// Without this "fix" a higher speed of the leader may cause a lower acceleration (which is crazy)
sStar = new DoubleScalar.Rel<LengthUnit>(0, LengthUnit.METER);
}
// System.out.println("s* is " + sStar);
double rightComponent = 1 - Math.pow(sStar.getSI() / headway.getSI(), 2);
// if (rightComponent < 0)
// {
// System.out.println("rightComponent is " + rightComponent);
// }
MutableDoubleScalar.Abs<AccelerationUnit> newAcceleration =
new MutableDoubleScalar.Abs<AccelerationUnit>(this.a);
newAcceleration.multiply(Math.min(leftComponent, rightComponent));
// System.out.println("newAcceleration is " + newAcceleration);
if (newAcceleration.getSI() * this.stepSize.getSI() + followerSpeed.getSI() < 0)
{
// System.out.println("Preventing follower from driving backwards " + follower);
newAcceleration =
new MutableDoubleScalar.Abs<AccelerationUnit>(-followerSpeed.getSI() / this.stepSize.getSI(),
AccelerationUnit.METER_PER_SECOND_2);
}
// System.out.println("newAcceleration is " + newAcceleration);
return newAcceleration.immutable();
}
/** {@inheritDoc} */
@Override
public final DoubleScalar.Rel<TimeUnit> getStepSize()
{
return new DoubleScalar.Rel<TimeUnit>(this.stepSize);
}
/** {@inheritDoc} */
@Override
public final DoubleScalar.Abs<AccelerationUnit> maximumSafeDeceleration()
{
return this.b;
}
/** {@inheritDoc} */
@Override
public final String getName()
{
return "IDM+";
}
/** {@inheritDoc} */
@Override
public final String getLongName()
{
return String.format("%s (a=%.1fm/s\u00b2, b=%.1fm/s\u00b2, s0=%.1fm, tSafe=%.1fs, delta=%.2f)", getName(),
this.a.getSI(), this.b.getSI(), this.s0.getSI(), this.tSafe.getSI(), this.delta);
}
}