Bezier.java
- package org.opentrafficsim.core.geometry;
- import nl.tudelft.simulation.language.d3.DirectedPoint;
- /**
- * Generation of Bézier curves. <br>
- * The class implements the cubic(...) method to generate a cubic Bézier curve using the following formula: B(t) = (1 -
- * t)<sup>3</sup>P<sub>0</sub> + 3t(1 - t)<sup>2</sup> P<sub>1</sub> + 3t<sup>2</sup> (1 - t) P<sub>2</sub> + t<sup>3</sup>
- * P<sub>3</sub> where P<sub>0</sub> and P<sub>3</sub> are the end points, and P<sub>1</sub> and P<sub>2</sub> the control
- * points. <br>
- * For a smooth movement, one of the standard implementations if the cubic(...) function offered is the case where P<sub>1</sub>
- * is positioned halfway between P<sub>0</sub> and P<sub>3</sub> starting from P<sub>0</sub> in the direction of P<sub>3</sub>,
- * and P<sub>2</sub> is positioned halfway between P<sub>3</sub> and P<sub>0</sub> starting from P<sub>3</sub> in the direction
- * of P<sub>0</sub>.<br>
- * Finally, an n-point generalization of the Bézier curve is implemented with the bezier(...) function.
- * <p>
- * Copyright (c) 2013-2016 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
- * BSD-style license. See <a href="http://opentrafficsim.org/docs/license.html">OpenTrafficSim License</a>.
- * </p>
- * $LastChangedDate: 2015-07-24 02:58:59 +0200 (Fri, 24 Jul 2015) $, @version $Revision: 1147 $, by $Author: averbraeck $,
- * initial version Nov 14, 2015 <br>
- * @author <a href="http://www.tbm.tudelft.nl/averbraeck">Alexander Verbraeck</a>
- * @author <a href="http://www.tudelft.nl/pknoppers">Peter Knoppers</a>
- */
- public final class Bezier
- {
- /** The default number of points to use to construct a Bézier curve. */
- private static final int DEFAULT_NUM_POINTS = 64;
- /** Cached factorial values. */
- private static long[] fact = new long[]{1L, 1L, 2L, 6L, 24L, 120L, 720L, 5040L, 40320L, 362880L, 3628800L,
- 39916800L, 479001600L, 6227020800L, 87178291200L, 1307674368000L, 20922789888000L, 355687428096000L,
- 6402373705728000L, 121645100408832000L, 2432902008176640000L};
- /** Utility class. */
- private Bezier()
- {
- // do not instantiate
- }
- /**
- * Construct a cubic Bézier curve from start to end with two control points.
- * @param numPoints the number of points for the Bézier curve
- * @param start the start point of the Bézier curve
- * @param control1 the first control point
- * @param control2 the second control point
- * @param end the end point of the Bézier curve
- * @return a cubic Bézier curve between start and end, with the two provided control points
- * @throws OTSGeometryException in case the number of points is less than 2 or the Bézier curve could not be
- * constructed
- */
- public static OTSLine3D cubic(final int numPoints, final OTSPoint3D start, final OTSPoint3D control1,
- final OTSPoint3D control2, final OTSPoint3D end) throws OTSGeometryException
- {
- OTSPoint3D[] points = new OTSPoint3D[numPoints];
- for (int n = 0; n < numPoints; n++)
- {
- double t = n / (numPoints - 1.0);
- double x = B3(t, start.x, control1.x, control2.x, end.x);
- double y = B3(t, start.y, control1.y, control2.y, end.y);
- double z = B3(t, start.z, control1.z, control2.z, end.z);
- points[n] = new OTSPoint3D(x, y, z);
- }
- return new OTSLine3D(points);
- }
- /**
- * Construct a cubic Bézier curve from start to end with two generated control points at half the distance between
- * start and end. The z-value is interpolated in a linear way.
- * @param numPoints the number of points for the Bézier curve
- * @param start the directed start point of the Bézier curve
- * @param end the directed end point of the Bézier curve
- * @return a cubic Bézier curve between start and end, with the two provided control points
- * @throws OTSGeometryException in case the number of points is less than 2 or the Bézier curve could not be
- * constructed
- */
- public static OTSLine3D cubic(final int numPoints, final DirectedPoint start, final DirectedPoint end)
- throws OTSGeometryException
- {
- double distance2 =
- Math.sqrt((end.x - start.x) * (end.x - start.x) + (end.y - start.y) * (end.y - start.y)) / 2.0;
- OTSPoint3D control1 =
- new OTSPoint3D(start.x + distance2 * Math.cos(start.getRotZ()), start.y + distance2
- * Math.sin(start.getRotZ()), start.z);
- OTSPoint3D control2 =
- new OTSPoint3D(end.x - distance2 * Math.cos(end.getRotZ()), end.y - distance2 * Math.sin(end.getRotZ()),
- end.z);
- // return cubic(numPoints, new OTSPoint3D(start), control1, control2, new OTSPoint3D(end));
- return bezier(numPoints, new OTSPoint3D(start), control1, control2, new OTSPoint3D(end));
- }
- /**
- * Construct a cubic Bézier curve from start to end with two generated control points at half the distance between
- * start and end. The z-value is interpolated in a linear way.
- * @param start the directed start point of the Bézier curve
- * @param end the directed end point of the Bézier curve
- * @return a cubic Bézier curve between start and end, with the two provided control points
- * @throws OTSGeometryException in case the number of points is less than 2 or the Bézier curve could not be
- * constructed
- */
- public static OTSLine3D cubic(final DirectedPoint start, final DirectedPoint end) throws OTSGeometryException
- {
- return cubic(DEFAULT_NUM_POINTS, start, end);
- }
- /**
- * Calculate the cubic Bézier point with B(t) = (1 - t)<sup>3</sup>P<sub>0</sub> + 3t(1 - t)<sup>2</sup>
- * P<sub>1</sub> + 3t<sup>2</sup> (1 - t) P<sub>2</sub> + t<sup>3</sup> P<sub>3</sub>.
- * @param t the fraction
- * @param p0 the first point of the curve
- * @param p1 the first control point
- * @param p2 the second control point
- * @param p3 the end point of the curve
- * @return the cubic bezier value B(t)
- */
- @SuppressWarnings("checkstyle:methodname")
- private static double B3(final double t, final double p0, final double p1, final double p2, final double p3)
- {
- double t2 = t * t;
- double t3 = t2 * t;
- double m = (1.0 - t);
- double m2 = m * m;
- double m3 = m2 * m;
- return m3 * p0 + 3.0 * t * m2 * p1 + 3.0 * t2 * m * p2 + t3 * p3;
- }
- /**
- * Construct a Bézier curve of degree n.
- * @param numPoints the number of points for the Bézier curve to be constructed
- * @param points the points of the curve, where the first and last are begin and end point, and the intermediate ones are
- * control points. There should be at least two points.
- * @return the Bézier value B(t) of degree n, where n is the number of points in the array
- * @throws OTSGeometryException in case the number of points is less than 2 or the Bézier curve could not be
- * constructed
- */
- public static OTSLine3D bezier(final int numPoints, final OTSPoint3D... points) throws OTSGeometryException
- {
- OTSPoint3D[] result = new OTSPoint3D[numPoints];
- double[] px = new double[points.length];
- double[] py = new double[points.length];
- double[] pz = new double[points.length];
- for (int i = 0; i < points.length; i++)
- {
- px[i] = points[i].x;
- py[i] = points[i].y;
- pz[i] = points[i].z;
- }
- for (int n = 0; n < numPoints; n++)
- {
- double t = n / (numPoints - 1.0);
- double x = Bn(t, px);
- double y = Bn(t, py);
- double z = Bn(t, pz);
- result[n] = new OTSPoint3D(x, y, z);
- }
- return new OTSLine3D(result);
- }
- /**
- * Construct a Bézier curve of degree n.
- * @param points the points of the curve, where the first and last are begin and end point, and the intermediate ones are
- * control points. There should be at least two points.
- * @return the Bézier value B(t) of degree n, where n is the number of points in the array
- * @throws OTSGeometryException in case the number of points is less than 2 or the Bézier curve could not be
- * constructed
- */
- public static OTSLine3D bezier(final OTSPoint3D... points) throws OTSGeometryException
- {
- return bezier(DEFAULT_NUM_POINTS, points);
- }
- /**
- * Calculate the Bézier point of degree n, with B(t) = Sum(i = 0..n) [C(n, i) * (1 - t)<sup>n-i</sup> t<sup>i</sup>
- * P<sub>i</sub>], where C(n, k) is the binomial coefficient defined by n! / ( k! (n-k)! ), ! being the factorial operator.
- * @param t the fraction
- * @param p the points of the curve, where the first and last are begin and end point, and the intermediate ones are control
- * points
- * @return the Bézier value B(t) of degree n, where n is the number of points in the array
- */
- @SuppressWarnings("checkstyle:methodname")
- private static double Bn(final double t, final double... p)
- {
- double b = 0.0;
- double m = (1.0 - t);
- int n = p.length - 1;
- double fn = factorial(n);
- for (int i = 0; i <= n; i++)
- {
- double c = fn / (factorial(i) * (factorial(n - i)));
- b += c * Math.pow(m, n - i) * Math.pow(t, i) * p[i];
- }
- return b;
- }
- /**
- * Calculate factorial(k), which is k * (k-1) * (k-2) * ... * 1. For factorials up to 20, a lookup table is used.
- * @param k the parameter
- * @return factorial(k)
- */
- private static double factorial(final int k)
- {
- if (k < fact.length)
- {
- return fact[k];
- }
- double f = 1;
- for (int i = 2; i <= k; i++)
- {
- f = f * i;
- }
- return f;
- }
- /**
- * @param args args
- * @throws OTSGeometryException ne
- */
- public static void main(final String[] args) throws OTSGeometryException
- {
- // DirectedPoint s = new DirectedPoint(0, 0, 0, 0, 0, -Math.PI/2.0);
- // DirectedPoint e = new DirectedPoint(10, 10, 20, 0, 0, Math.PI);
- // OTSLine3D b1 = Bezier.cubic(s, e);
- // for (OTSPoint3D p : b1.getPoints())
- // {
- // System.out.println(p.x + "\t" + p.y + "\t" + p.z);
- // }
- OTSPoint3D s = new OTSPoint3D(0, 0, 0);
- OTSPoint3D s1 = new OTSPoint3D(10, 0, 0);
- OTSPoint3D m1 = new OTSPoint3D(25, 5, 0);
- OTSPoint3D m2 = new OTSPoint3D(-15, 5, 0);
- OTSPoint3D e0 = new OTSPoint3D(0, 10, 20);
- OTSPoint3D e = new OTSPoint3D(10, 10, 20);
- OTSLine3D b1 = Bezier.bezier(s, s1, m1, m2, e0, e);
- for (OTSPoint3D p : b1.getPoints())
- {
- System.out.println(p.x + "\t" + p.y + "\t" + p.z);
- }
- }
- }