WienerProcess.java
package org.opentrafficsim.road.gtu.lane.perception.categories;
import org.djunits.value.vdouble.scalar.Duration;
import org.djunits.value.vdouble.scalar.Time;
import org.opentrafficsim.core.dsol.OTSSimulatorInterface;
import nl.tudelft.simulation.jstats.distributions.DistNormal;
import nl.tudelft.simulation.jstats.streams.StreamInterface;
/**
* A numerical update scheme that represents a Wiener process if {@code dt << tau}. A Wiener process is a process that results
* in random values that follow a Normal distribution with parameters mu and sigma. However, there is a time progression with
* correlation {@code tau}, such that the process has a tendency to stay close to the previous value. The correlation time
* {@code tau} is a measure for this tendency. Given sufficient time (and {@code dt << tau}) the overall probability remains
* equal to the Normal distribution.
* <p>
* The Wiener process is typically used for measurement or perception errors in cases where the error of two consecutive time
* steps is unlikely to deviate much.
* <p>
* Treiber, M., A. Kesting, D. Helbing (2006) "Delays, Inaccuracies and Anticipation in Microscopic Traffic Models", Physica A –
* Statistical Mechanics and its Applications, Vol. 360, Issue 1, pp. 71-88.
* <p>
* Copyright (c) 2013-2019 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
* BSD-style license. See <a href="http://opentrafficsim.org/node/13">OpenTrafficSim License</a>.
* <p>
* @version $Revision$, $LastChangedDate$, by $Author$, initial version 18 okt. 2018 <br>
* @author <a href="http://www.tbm.tudelft.nl/averbraeck">Alexander Verbraeck</a>
* @author <a href="http://www.tudelft.nl/pknoppers">Peter Knoppers</a>
* @author <a href="http://www.transport.citg.tudelft.nl">Wouter Schakel</a>
*/
public class WienerProcess extends DistNormal
{
/** */
private static final long serialVersionUID = 20181018L;
/** Simulator. */
private final OTSSimulatorInterface simulator;
/** Mean. */
private final double muW;
/** Standard deviation. */
private final double sigmaW;
/** Correlation time. */
private final Duration tau;
/** Value of the standard Wiener process (mu = 0, sigma = 1). */
private Double value;
/** Time the value was determined. */
private Time prevTime;
/**
* @param stream StreamInterface; random number stream
* @param mu double; mean
* @param sigma double; standard deviation
* @param tau Duration; correlation time
* @param simulator OTSSimulatorInterface; simulator
*/
public WienerProcess(final StreamInterface stream, final double mu, final double sigma, final Duration tau,
final OTSSimulatorInterface simulator)
{
super(stream);
this.muW = mu;
this.sigmaW = sigma;
this.tau = tau;
this.simulator = simulator;
}
/** {@inheritDoc} */
@Override
public double draw()
{
if (this.value == null)
{
this.value = super.draw();
this.prevTime = this.simulator.getSimulatorTime();
}
else if (this.simulator.getSimulatorTime().gt(this.prevTime))
{
// calculate next value
Time now = this.simulator.getSimulatorTime();
double dt = now.si - this.prevTime.si;
if (dt <= this.tau.si)
{
this.value = Math.exp(-dt / this.tau.si) * this.value + Math.sqrt((2 * dt) / this.tau.si) * super.draw();
}
else
{
// too long ago, exp may result in extreme values, draw new independent value
this.value = super.draw();
}
this.prevTime = now;
}
return this.muW + this.value * this.sigmaW;
}
}