AbstractLaneBasedGTU.java
package org.opentrafficsim.road.gtu.lane;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Iterator;
import java.util.LinkedHashMap;
import java.util.LinkedHashSet;
import java.util.List;
import java.util.Map;
import java.util.Set;
import javax.media.j3d.Bounds;
import javax.vecmath.Point3d;
import org.djunits.unit.DirectionUnit;
import org.djunits.unit.DurationUnit;
import org.djunits.unit.LengthUnit;
import org.djunits.unit.PositionUnit;
import org.djunits.value.vdouble.scalar.Acceleration;
import org.djunits.value.vdouble.scalar.Duration;
import org.djunits.value.vdouble.scalar.Length;
import org.djunits.value.vdouble.scalar.Speed;
import org.djunits.value.vdouble.scalar.Time;
import org.djutils.exceptions.Throw;
import org.djutils.exceptions.Try;
import org.djutils.immutablecollections.ImmutableMap;
import org.opentrafficsim.base.parameters.ParameterException;
import org.opentrafficsim.core.dsol.OTSSimulatorInterface;
import org.opentrafficsim.core.geometry.OTSGeometryException;
import org.opentrafficsim.core.geometry.OTSLine3D;
import org.opentrafficsim.core.geometry.OTSLine3D.FractionalFallback;
import org.opentrafficsim.core.geometry.OTSPoint3D;
import org.opentrafficsim.core.gtu.AbstractGTU;
import org.opentrafficsim.core.gtu.GTU;
import org.opentrafficsim.core.gtu.GTUDirectionality;
import org.opentrafficsim.core.gtu.GTUException;
import org.opentrafficsim.core.gtu.GTUType;
import org.opentrafficsim.core.gtu.RelativePosition;
import org.opentrafficsim.core.gtu.TurnIndicatorStatus;
import org.opentrafficsim.core.gtu.perception.EgoPerception;
import org.opentrafficsim.core.gtu.plan.operational.OperationalPlan;
import org.opentrafficsim.core.gtu.plan.operational.OperationalPlanBuilder;
import org.opentrafficsim.core.gtu.plan.operational.OperationalPlanException;
import org.opentrafficsim.core.network.LateralDirectionality;
import org.opentrafficsim.core.network.Link;
import org.opentrafficsim.core.network.NetworkException;
import org.opentrafficsim.core.perception.Historical;
import org.opentrafficsim.core.perception.HistoricalValue;
import org.opentrafficsim.core.perception.HistoryManager;
import org.opentrafficsim.core.perception.collections.HistoricalLinkedHashMap;
import org.opentrafficsim.core.perception.collections.HistoricalMap;
import org.opentrafficsim.road.gtu.lane.perception.LanePerception;
import org.opentrafficsim.road.gtu.lane.perception.PerceptionCollectable;
import org.opentrafficsim.road.gtu.lane.perception.RelativeLane;
import org.opentrafficsim.road.gtu.lane.perception.categories.DefaultSimplePerception;
import org.opentrafficsim.road.gtu.lane.perception.categories.InfrastructurePerception;
import org.opentrafficsim.road.gtu.lane.perception.categories.neighbors.NeighborsPerception;
import org.opentrafficsim.road.gtu.lane.perception.headway.HeadwayGTU;
import org.opentrafficsim.road.gtu.lane.plan.operational.LaneBasedOperationalPlan;
import org.opentrafficsim.road.gtu.strategical.LaneBasedStrategicalPlanner;
import org.opentrafficsim.road.network.OTSRoadNetwork;
import org.opentrafficsim.road.network.RoadNetwork;
import org.opentrafficsim.road.network.lane.CrossSectionElement;
import org.opentrafficsim.road.network.lane.CrossSectionLink;
import org.opentrafficsim.road.network.lane.DirectedLanePosition;
import org.opentrafficsim.road.network.lane.Lane;
import org.opentrafficsim.road.network.lane.LaneDirection;
import org.opentrafficsim.road.network.speed.SpeedLimitInfo;
import org.opentrafficsim.road.network.speed.SpeedLimitTypes;
import nl.tudelft.simulation.dsol.SimRuntimeException;
import nl.tudelft.simulation.dsol.formalisms.eventscheduling.SimEvent;
import nl.tudelft.simulation.dsol.formalisms.eventscheduling.SimEventInterface;
import nl.tudelft.simulation.dsol.simtime.SimTimeDoubleUnit;
import nl.tudelft.simulation.language.d3.BoundingBox;
import nl.tudelft.simulation.language.d3.DirectedPoint;
/**
* This class contains most of the code that is needed to run a lane based GTU. <br>
* The starting point of a LaneBasedTU is that it can be in <b>multiple lanes</b> at the same time. This can be due to a lane
* change (lateral), or due to crossing a link (front of the GTU is on another Lane than rear of the GTU). If a Lane is shorter
* than the length of the GTU (e.g. when we do node expansion on a crossing, this is very well possible), a GTU could occupy
* dozens of Lanes at the same time.
* <p>
* When calculating a headway, the GTU has to look in successive lanes. When Lanes (or underlying CrossSectionLinks) diverge,
* the headway algorithms have to look at multiple Lanes and return the minimum headway in each of the Lanes. When the Lanes (or
* underlying CrossSectionLinks) converge, "parallel" traffic is not taken into account in the headway calculation. Instead, gap
* acceptance algorithms or their equivalent should guide the merging behavior.
* <p>
* To decide its movement, an AbstractLaneBasedGTU applies its car following algorithm and lane change algorithm to set the
* acceleration and any lane change operation to perform. It then schedules the triggers that will add it to subsequent lanes
* and remove it from current lanes as needed during the time step that is has committed to. Finally, it re-schedules its next
* movement evaluation with the simulator.
* <p>
* Copyright (c) 2013-2020 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
* BSD-style license. See <a href="http://opentrafficsim.org/docs/license.html">OpenTrafficSim License</a>.
* <p>
* @version $Revision: 1408 $, $LastChangedDate: 2015-09-24 15:17:25 +0200 (Thu, 24 Sep 2015) $, by $Author: pknoppers $,
* initial version Oct 22, 2014 <br>
* @author <a href="http://www.tbm.tudelft.nl/averbraeck">Alexander Verbraeck</a>
* @author <a href="http://www.tudelft.nl/pknoppers">Peter Knoppers</a>
*/
public abstract class AbstractLaneBasedGTU extends AbstractGTU implements LaneBasedGTU
{
/** */
private static final long serialVersionUID = 20140822L;
/**
* Fractional longitudinal positions of the reference point of the GTU on one or more links at the start of the current
* operational plan. Because the reference point of the GTU might not be on all the links the GTU is registered on, the
* fractional longitudinal positions can be more than one, or less than zero.
*/
private HistoricalMap<Link, Double> fractionalLinkPositions;
/**
* The lanes the GTU is registered on. Each lane has to have its link registered in the fractionalLinkPositions as well to
* keep consistency. Each link from the fractionalLinkPositions can have one or more Lanes on which the vehicle is
* registered. This is a list to improve reproducibility: The 'oldest' lanes on which the vehicle is registered are at the
* front of the list, the later ones more to the back.
*/
private final HistoricalMap<Lane, GTUDirectionality> currentLanes;
/** Maps that we enter when initiating a lane change, but we may not actually enter given a deviative plan. */
private final Set<Lane> enteredLanes = new LinkedHashSet<>();
/** Pending leave triggers for each lane. */
private Map<Lane, List<SimEventInterface<SimTimeDoubleUnit>>> pendingLeaveTriggers = new LinkedHashMap<>();
/** Pending enter triggers for each lane. */
private Map<Lane, List<SimEventInterface<SimTimeDoubleUnit>>> pendingEnterTriggers = new LinkedHashMap<>();
/** Event to finalize lane change. */
private SimEventInterface<SimTimeDoubleUnit> finalizeLaneChangeEvent = null;
/** Cached desired speed. */
private Speed cachedDesiredSpeed;
/** Time desired speed was cached. */
private Time desiredSpeedTime;
/** Cached car-following acceleration. */
private Acceleration cachedCarFollowingAcceleration;
/** Time car-following acceleration was cached. */
private Time carFollowingAccelerationTime;
/** The object to lock to make the GTU thread safe. */
private Object lock = new Object();
/** The threshold distance for differences between initial locations of the GTU on different lanes. */
@SuppressWarnings("checkstyle:visibilitymodifier")
public static Length initialLocationThresholdDifference = new Length(1.0, LengthUnit.MILLIMETER);
/** Turn indicator status. */
private final Historical<TurnIndicatorStatus> turnIndicatorStatus;
/** Caching on or off. */
// TODO: should be indicated with a Parameter
public static boolean CACHING = true;
/** cached position count. */
// TODO: can be removed after testing period
public static int CACHED_POSITION = 0;
/** cached position count. */
// TODO: can be removed after testing period
public static int NON_CACHED_POSITION = 0;
/** Vehicle model. */
private VehicleModel vehicleModel = VehicleModel.MINMAX;
/**
* Construct a Lane Based GTU.
* @param id String; the id of the GTU
* @param gtuType GTUType; the type of GTU, e.g. TruckType, CarType, BusType
* @param network OTSRoadNetwork; the network that the GTU is initially registered in
* @throws GTUException when initial values are not correct
*/
public AbstractLaneBasedGTU(final String id, final GTUType gtuType, final OTSRoadNetwork network) throws GTUException
{
super(id, gtuType, network.getSimulator(), network);
OTSSimulatorInterface simulator = network.getSimulator();
HistoryManager historyManager = simulator.getReplication().getHistoryManager(simulator);
this.fractionalLinkPositions = new HistoricalLinkedHashMap<>(historyManager);
this.currentLanes = new HistoricalLinkedHashMap<>(historyManager);
this.turnIndicatorStatus = new HistoricalValue<>(historyManager, TurnIndicatorStatus.NOTPRESENT);
}
/**
* @param strategicalPlanner LaneBasedStrategicalPlanner; the strategical planner (e.g., route determination) to use
* @param initialLongitudinalPositions Set<DirectedLanePosition>; the initial positions of the car on one or more
* lanes with their directions
* @param initialSpeed Speed; the initial speed of the car on the lane
* @throws NetworkException when the GTU cannot be placed on the given lane
* @throws SimRuntimeException when the move method cannot be scheduled
* @throws GTUException when initial values are not correct
* @throws OTSGeometryException when the initial path is wrong
*/
@SuppressWarnings("checkstyle:designforextension")
public void init(final LaneBasedStrategicalPlanner strategicalPlanner,
final Set<DirectedLanePosition> initialLongitudinalPositions, final Speed initialSpeed)
throws NetworkException, SimRuntimeException, GTUException, OTSGeometryException
{
Throw.when(null == initialLongitudinalPositions, GTUException.class, "InitialLongitudinalPositions is null");
Throw.when(0 == initialLongitudinalPositions.size(), GTUException.class, "InitialLongitudinalPositions is empty set");
DirectedPoint lastPoint = null;
for (DirectedLanePosition pos : initialLongitudinalPositions)
{
// Throw.when(lastPoint != null && pos.getLocation().distance(lastPoint) > initialLocationThresholdDifference.si,
// GTUException.class, "initial locations for GTU have distance > " + initialLocationThresholdDifference);
lastPoint = pos.getLocation();
}
DirectedPoint initialLocation = lastPoint;
// Give the GTU a 1 micrometer long operational plan, or a stand-still plan, so the first move and events will work
Time now = getSimulator().getSimulatorTime();
try
{
if (initialSpeed.si < OperationalPlan.DRIFTING_SPEED_SI)
{
this.operationalPlan
.set(new OperationalPlan(this, initialLocation, now, new Duration(1E-6, DurationUnit.SECOND)));
}
else
{
OTSPoint3D p2 = new OTSPoint3D(initialLocation.x + 1E-6 * Math.cos(initialLocation.getRotZ()),
initialLocation.y + 1E-6 * Math.sin(initialLocation.getRotZ()), initialLocation.z);
OTSLine3D path = new OTSLine3D(new OTSPoint3D(initialLocation), p2);
this.operationalPlan.set(OperationalPlanBuilder.buildConstantSpeedPlan(this, path, now, initialSpeed));
}
}
catch (OperationalPlanException e)
{
throw new RuntimeException("Initial operational plan could not be created.", e);
}
// register the GTU on the lanes
for (DirectedLanePosition directedLanePosition : initialLongitudinalPositions)
{
Lane lane = directedLanePosition.getLane();
addLaneToGtu(lane, directedLanePosition.getPosition(), directedLanePosition.getGtuDirection()); // enter lane part 1
}
// init event
DirectedLanePosition referencePosition = getReferencePosition();
fireTimedEvent(LaneBasedGTU.LANEBASED_INIT_EVENT,
new Object[] { getId(), initialLocation, getLength(), getWidth(), referencePosition.getLane(),
referencePosition.getPosition(), referencePosition.getGtuDirection(), getGTUType() },
getSimulator().getSimulatorTime());
// register the GTU on the lanes
for (DirectedLanePosition directedLanePosition : initialLongitudinalPositions)
{
Lane lane = directedLanePosition.getLane();
lane.addGTU(this, directedLanePosition.getPosition()); // enter lane part 2
}
// initiate the actual move
super.init(strategicalPlanner, initialLocation, initialSpeed);
this.referencePositionTime = Double.NaN; // remove cache, it may be invalid as the above init results in a lane change
}
/**
* {@inheritDoc} All lanes the GTU is on will be left.
*/
@Override
public void setParent(final GTU gtu) throws GTUException
{
for (Lane lane : new LinkedHashSet<>(this.currentLanes.keySet())) // copy for concurrency problems
{
leaveLane(lane);
}
super.setParent(gtu);
}
/**
* Reinitializes the GTU on the network using the existing strategical planner and zero speed.
* @param initialLongitudinalPositions Set<DirectedLanePosition>; initial position
* @throws NetworkException when the GTU cannot be placed on the given lane
* @throws SimRuntimeException when the move method cannot be scheduled
* @throws GTUException when initial values are not correct
* @throws OTSGeometryException when the initial path is wrong
*/
public void reinit(final Set<DirectedLanePosition> initialLongitudinalPositions)
throws NetworkException, SimRuntimeException, GTUException, OTSGeometryException
{
init(getStrategicalPlanner(), initialLongitudinalPositions, Speed.ZERO);
}
/**
* Hack method. TODO remove and solve better
* @return safe to change
* @throws GTUException on error
*/
public final boolean isSafeToChange() throws GTUException
{
return this.fractionalLinkPositions.get(getReferencePosition().getLane().getParentLink()) > 0.0;
}
/**
* insert GTU at a certain position. This can happen at setup (first initialization), and after a lane change of the GTU.
* The relative position that will be registered is the referencePosition (dx, dy, dz) = (0, 0, 0). Front and rear positions
* are relative towards this position.
* @param lane Lane; the lane to add to the list of lanes on which the GTU is registered.
* @param gtuDirection GTUDirectionality; the direction of the GTU on the lane (which can be bidirectional). If the GTU has
* a positive speed, it is moving in this direction.
* @param position Length; the position on the lane.
* @throws GTUException when positioning the GTU on the lane causes a problem
*/
@SuppressWarnings("checkstyle:designforextension")
public void enterLane(final Lane lane, final Length position, final GTUDirectionality gtuDirection) throws GTUException
{
if (lane == null || gtuDirection == null || position == null)
{
throw new GTUException("enterLane - one of the arguments is null");
}
addLaneToGtu(lane, position, gtuDirection);
addGtuToLane(lane, position);
}
/**
* Registers the lane at the GTU. Only works at the start of a operational plan.
* @param lane Lane; the lane to add to the list of lanes on which the GTU is registered.
* @param gtuDirection GTUDirectionality; the direction of the GTU on the lane (which can be bidirectional). If the GTU has
* a positive speed, it is moving in this direction.
* @param position Length; the position on the lane.
* @throws GTUException when positioning the GTU on the lane causes a problem
*/
private void addLaneToGtu(final Lane lane, final Length position, final GTUDirectionality gtuDirection) throws GTUException
{
if (this.currentLanes.containsKey(lane))
{
System.err.println(this + " is already registered on lane: " + lane + " at fractional position "
+ this.fractionalPosition(lane, RelativePosition.REFERENCE_POSITION) + " intended position is " + position
+ " length of lane is " + lane.getLength());
return;
}
// if the GTU is already registered on a lane of the same link, do not change its fractional position, as
// this might lead to a "jump".
if (!this.fractionalLinkPositions.containsKey(lane.getParentLink()))
{
this.fractionalLinkPositions.put(lane.getParentLink(), lane.fraction(position));
}
this.currentLanes.put(lane, gtuDirection);
}
/**
* Part of 'enterLane' which registers the GTU with the lane so the lane can report its GTUs.
* @param lane Lane; lane
* @param position Length; position
* @throws GTUException on exception
*/
protected void addGtuToLane(final Lane lane, final Length position) throws GTUException
{
List<SimEventInterface<SimTimeDoubleUnit>> pending = this.pendingEnterTriggers.get(lane);
if (null != pending)
{
for (SimEventInterface<SimTimeDoubleUnit> event : pending)
{
if (event.getAbsoluteExecutionTime().get().ge(getSimulator().getSimulatorTime()))
{
boolean result = getSimulator().cancelEvent(event);
if (!result && event.getAbsoluteExecutionTime().get().ne(getSimulator().getSimulatorTime()))
{
System.err.println("addLaneToGtu, trying to remove event: NOTHING REMOVED -- result=" + result
+ ", simTime=" + getSimulator().getSimulatorTime() + ", eventTime="
+ event.getAbsoluteExecutionTime().get());
}
}
}
this.pendingEnterTriggers.remove(lane);
}
lane.addGTU(this, position);
}
/**
* Unregister the GTU from a lane.
* @param lane Lane; the lane to remove from the list of lanes on which the GTU is registered.
* @throws GTUException when leaveLane should not be called
*/
@SuppressWarnings("checkstyle:designforextension")
public void leaveLane(final Lane lane) throws GTUException
{
leaveLane(lane, false);
}
/**
* Leave a lane but do not complain about having no lanes left when beingDestroyed is true.
* @param lane Lane; the lane to leave
* @param beingDestroyed boolean; if true, no complaints about having no lanes left
* @throws GTUException in case leaveLane should not be called
*/
@SuppressWarnings("checkstyle:designforextension")
public void leaveLane(final Lane lane, final boolean beingDestroyed) throws GTUException
{
Length position = position(lane, getReference());
this.currentLanes.remove(lane);
removePendingEvents(lane, this.pendingLeaveTriggers);
removePendingEvents(lane, this.pendingEnterTriggers);
// check if there are any lanes for this link left. If not, remove the link.
boolean found = false;
for (Lane l : this.currentLanes.keySet())
{
if (l.getParentLink().equals(lane.getParentLink()))
{
found = true;
}
}
if (!found)
{
this.fractionalLinkPositions.remove(lane.getParentLink());
}
lane.removeGTU(this, !found, position);
if (this.currentLanes.size() == 0 && !beingDestroyed)
{
System.err.println("leaveLane: lanes.size() = 0 for GTU " + getId());
}
}
/**
* Removes and cancels events for the given lane.
* @param lane Lane; lane
* @param triggers Map<Lane, List<SimEventInterface<SimTimeDoubleUnit>>>; map to use
*/
private void removePendingEvents(final Lane lane, final Map<Lane, List<SimEventInterface<SimTimeDoubleUnit>>> triggers)
{
List<SimEventInterface<SimTimeDoubleUnit>> pending = triggers.get(lane);
if (null != pending)
{
for (SimEventInterface<SimTimeDoubleUnit> event : pending)
{
if (event.getAbsoluteExecutionTime().get().ge(getSimulator().getSimulatorTime()))
{
boolean result = getSimulator().cancelEvent(event);
if (!result && event.getAbsoluteExecutionTime().get().ne(getSimulator().getSimulatorTime()))
{
System.err.println("leaveLane, trying to remove event: NOTHING REMOVED -- result=" + result
+ ", simTime=" + getSimulator().getSimulatorTime() + ", eventTime="
+ event.getAbsoluteExecutionTime().get());
}
}
}
triggers.remove(lane);
}
}
/** {@inheritDoc} */
@Override
public void changeLaneInstantaneously(final LateralDirectionality laneChangeDirection) throws GTUException
{
// from info
DirectedLanePosition from = getReferencePosition();
// keep a copy of the lanes and directions (!)
Set<Lane> lanesToBeRemoved = new LinkedHashSet<>(this.currentLanes.keySet());
// store the new positions
// start with current link position, these will be overwritten, except if from a lane no adjacent lane is found, i.e.
// changing over a continuous line when probably the reference point is past the line
Map<Link, Double> newLinkPositionsLC = new LinkedHashMap<>(this.fractionalLinkPositions);
// obtain position on lane adjacent to reference lane and enter lanes upstream/downstream from there
Set<Lane> adjLanes = from.getLane().accessibleAdjacentLanesPhysical(laneChangeDirection, getGTUType(),
this.currentLanes.get(from.getLane()));
Lane adjLane = adjLanes.iterator().next();
Length position = adjLane.position(from.getLane().fraction(from.getPosition()));
GTUDirectionality direction = getDirection(from.getLane());
Length planLength = Try.assign(() -> getOperationalPlan().getTraveledDistance(getSimulator().getSimulatorTime()),
"Exception while determining plan length.");
enterLaneRecursive(new LaneDirection(adjLane, direction), position, newLinkPositionsLC, planLength, lanesToBeRemoved,
0);
// update the positions on the lanes we are registered on
this.fractionalLinkPositions.clear();
this.fractionalLinkPositions.putAll(newLinkPositionsLC);
// leave the from lanes
for (Lane lane : lanesToBeRemoved)
{
leaveLane(lane);
}
// stored positions no longer valid
this.referencePositionTime = Double.NaN;
this.cachedPositions.clear();
// fire event
this.fireTimedEvent(LaneBasedGTU.LANE_CHANGE_EVENT, new Object[] { getId(), laneChangeDirection, from },
getSimulator().getSimulatorTime());
}
/**
* Enters lanes upstream and downstream of the new location after an instantaneous lane change.
* @param lane LaneDirection; considered lane
* @param position Length; position to add GTU at
* @param newLinkPositionsLC Map<Link, Double>; new link fractions to store
* @param planLength Length; length of plan, to consider fractions at start
* @param lanesToBeRemoved Set<Lane>; lanes to leave, from which lanes are removed when entered (such that they arent
* then left)
* @param dir int; below 0 for upstream, above 0 for downstream, 0 for both
* @throws GTUException on exception
*/
private void enterLaneRecursive(final LaneDirection lane, final Length position, final Map<Link, Double> newLinkPositionsLC,
final Length planLength, final Set<Lane> lanesToBeRemoved, final int dir) throws GTUException
{
enterLane(lane.getLane(), position, lane.getDirection());
lanesToBeRemoved.remove(lane);
Length adjusted = lane.getDirection().isPlus() ? position.minus(planLength) : position.plus(planLength);
newLinkPositionsLC.put(lane.getLane().getParentLink(), adjusted.si / lane.getLength().si);
// upstream
if (dir < 1)
{
Length rear = lane.getDirection().isPlus() ? position.plus(getRear().getDx()) : position.minus(getRear().getDx());
Length before = null;
if (lane.getDirection().isPlus() && rear.si < 0.0)
{
before = rear.neg();
}
else if (lane.getDirection().isMinus() && rear.si > lane.getLength().si)
{
before = rear.minus(lane.getLength());
}
if (before != null)
{
GTUDirectionality upDir = lane.getDirection();
ImmutableMap<Lane, GTUDirectionality> upstream = lane.getLane().upstreamLanes(upDir, getGTUType());
if (!upstream.isEmpty())
{
Lane upLane = null;
for (Lane nextUp : upstream.keySet())
{
if (newLinkPositionsLC.containsKey(nextUp.getParentLink()))
{
// multiple upstream lanes could belong to the same link, we pick an arbitrary lane
// (a conflict should solve this)
upLane = nextUp;
break;
}
}
if (upLane == null)
{
// the rear is on an upstream section we weren't before the lane change, due to curvature, we pick an
// arbitrary lane (a conflict should solve this)
upLane = upstream.keySet().iterator().next();
}
if (!this.currentLanes.containsKey(upLane))
{
upDir = upstream.get(upLane);
LaneDirection next = new LaneDirection(upLane, upDir);
Length nextPos = upDir.isPlus() ? next.getLength().minus(before).minus(getRear().getDx())
: before.plus(getRear().getDx());
enterLaneRecursive(next, nextPos, newLinkPositionsLC, planLength, lanesToBeRemoved, -1);
}
}
}
}
// downstream
if (dir > -1)
{
Length front =
lane.getDirection().isPlus() ? position.plus(getFront().getDx()) : position.minus(getFront().getDx());
Length passed = null;
if (lane.getDirection().isPlus() && front.si > lane.getLength().si)
{
passed = front.minus(lane.getLength());
}
else if (lane.getDirection().isMinus() && front.si < 0.0)
{
passed = front.neg();
}
if (passed != null)
{
LaneDirection next = lane.getNextLaneDirection(this);
if (!this.currentLanes.containsKey(next.getLane()))
{
Length nextPos = next.getDirection().isPlus() ? passed.minus(getFront().getDx())
: next.getLength().minus(passed).plus(getFront().getDx());
enterLaneRecursive(next, nextPos, newLinkPositionsLC, planLength, lanesToBeRemoved, 1);
}
}
}
}
/**
* Register on lanes in target lane.
* @param laneChangeDirection LateralDirectionality; direction of lane change
* @throws GTUException exception
*/
@Override
@SuppressWarnings("checkstyle:designforextension")
public void initLaneChange(final LateralDirectionality laneChangeDirection) throws GTUException
{
Map<Lane, GTUDirectionality> lanesCopy = new LinkedHashMap<>(this.currentLanes);
Map<Lane, Double> fractionalLanePositions = new LinkedHashMap<>();
for (Lane lane : lanesCopy.keySet())
{
fractionalLanePositions.put(lane, fractionalPosition(lane, getReference()));
}
int numRegistered = 0;
for (Lane lane : lanesCopy.keySet())
{
Set<Lane> laneSet = lane.accessibleAdjacentLanesLegal(laneChangeDirection, getGTUType(), getDirection(lane));
if (laneSet.size() > 0)
{
numRegistered++;
Lane adjacentLane = laneSet.iterator().next();
Length position = adjacentLane.getLength().times(fractionalLanePositions.get(lane));
if (lanesCopy.get(lane).isPlus() ? position.lt(lane.getLength().minus(getRear().getDx()))
: position.gt(getFront().getDx().neg()))
{
this.enteredLanes.add(adjacentLane);
enterLane(adjacentLane, position, lanesCopy.get(lane));
}
else
{
System.out.println("Skipping enterLane for GTU " + getId() + " on lane " + lane.getFullId() + " at "
+ position + ", lane length = " + lane.getLength() + " rear = " + getRear().getDx() + " front = "
+ getFront().getDx());
}
}
}
Throw.when(numRegistered == 0, GTUException.class, "Gtu %s starting %s lane change, but no adjacent lane found.",
getId(), laneChangeDirection);
}
/**
* Performs the finalization of a lane change by leaving the from lanes.
* @param laneChangeDirection LateralDirectionality; direction of lane change
*/
@SuppressWarnings("checkstyle:designforextension")
protected void finalizeLaneChange(final LateralDirectionality laneChangeDirection)
{
Map<Lane, GTUDirectionality> lanesCopy = new LinkedHashMap<>(this.currentLanes);
Set<Lane> lanesToBeRemoved = new LinkedHashSet<>();
Lane fromLane = null;
Length fromPosition = null;
GTUDirectionality fromDirection = null;
try
{
// find lanes to leave as they have an adjacent lane the GTU is also on in the lane change direction
for (Lane lane : lanesCopy.keySet())
{
Iterator<Lane> iterator =
lane.accessibleAdjacentLanesPhysical(laneChangeDirection, getGTUType(), getDirection(lane)).iterator();
if (iterator.hasNext() && lanesCopy.keySet().contains(iterator.next()))
{
lanesToBeRemoved.add(lane);
}
}
// some lanes registered to the GTU may be downstream of a split and have no adjacent lane, find longitudinally
boolean added = true;
while (added)
{
added = false;
Set<Lane> lanesToAlsoBeRemoved = new LinkedHashSet<>();
for (Lane lane : lanesToBeRemoved)
{
GTUDirectionality direction = getDirection(lane);
for (Lane nextLane : direction.isPlus() ? lane.nextLanes(getGTUType()).keySet()
: lane.prevLanes(getGTUType()).keySet())
{
if (lanesCopy.containsKey(nextLane) && !lanesToBeRemoved.contains(nextLane))
{
added = true;
lanesToAlsoBeRemoved.add(nextLane);
}
}
}
lanesToBeRemoved.addAll(lanesToAlsoBeRemoved);
}
double nearest = Double.POSITIVE_INFINITY;
for (Lane lane : lanesToBeRemoved)
{
Length pos = position(lane, RelativePosition.REFERENCE_POSITION);
if (0.0 <= pos.si && pos.si <= lane.getLength().si)
{
fromLane = lane;
fromPosition = pos;
fromDirection = getDirection(lane);
}
else if (fromLane == null && (getDirection(lane).isPlus() ? pos.si > lane.getLength().si : pos.le0()))
{
// if the reference point is in between two lanes, this recognizes the lane upstream of the gap
double distance = getDirection(lane).isPlus() ? pos.si - lane.getLength().si : -pos.si;
if (distance < nearest)
{
nearest = distance;
fromLane = lane;
fromPosition = pos;
fromDirection = getDirection(lane);
}
}
leaveLane(lane);
}
this.referencePositionTime = Double.NaN;
this.finalizeLaneChangeEvent = null;
}
catch (GTUException exception)
{
// should not happen, lane was obtained from GTU
throw new RuntimeException("position on lane not possible", exception);
}
Throw.when(fromLane == null, RuntimeException.class, "No from lane for lane change event.");
DirectedLanePosition from;
try
{
from = new DirectedLanePosition(fromLane, fromPosition, fromDirection);
}
catch (GTUException exception)
{
throw new RuntimeException(exception);
}
this.fireTimedEvent(LaneBasedGTU.LANE_CHANGE_EVENT, new Object[] { getId(), laneChangeDirection, from },
getSimulator().getSimulatorTime());
}
/** {@inheritDoc} */
@Override
public void setFinalizeLaneChangeEvent(final SimEventInterface<SimTimeDoubleUnit> event)
{
this.finalizeLaneChangeEvent = event;
}
/** {@inheritDoc} */
@Override
public final GTUDirectionality getDirection(final Lane lane) throws GTUException
{
Throw.when(!this.currentLanes.containsKey(lane), GTUException.class, "getDirection: Lanes %s does not contain %s",
this.currentLanes.keySet(), lane);
return this.currentLanes.get(lane);
}
/** {@inheritDoc} */
@Override
@SuppressWarnings("checkstyle:designforextension")
protected boolean move(final DirectedPoint fromLocation)
throws SimRuntimeException, GTUException, OperationalPlanException, NetworkException, ParameterException
{
// DirectedPoint currentPoint = getLocation(); // used for "jump" detection that is also commented out
// Only carry out move() if we still have lane(s) to drive on.
// Note: a (Sink) trigger can have 'destroyed' us between the previous evaluation step and this one.
if (this.currentLanes.isEmpty())
{
destroy();
return false; // Done; do not re-schedule execution of this move method.
}
// remove enter events
// WS: why?
// for (Lane lane : this.pendingEnterTriggers.keySet())
// {
// System.out.println("GTU " + getId() + " is canceling event on lane " + lane.getFullId());
// List<SimEventInterface<SimTimeDoubleUnit>> events = this.pendingEnterTriggers.get(lane);
// for (SimEventInterface<SimTimeDoubleUnit> event : events)
// {
// // also unregister from lane
// this.currentLanes.remove(lane);
// getSimulator().cancelEvent(event);
// }
// }
// this.pendingEnterTriggers.clear();
// get distance covered in previous plan, to aid a shift in link fraction (from which a plan moves onwards)
Length covered;
if (getOperationalPlan() instanceof LaneBasedOperationalPlan
&& ((LaneBasedOperationalPlan) getOperationalPlan()).isDeviative())
{
// traveled distance as difference between start and current position on reference lane
// note that for a deviative plan the traveled distance along the path is not valuable here
LaneBasedOperationalPlan plan = (LaneBasedOperationalPlan) getOperationalPlan();
DirectedLanePosition ref = getReferencePosition();
covered = ref.getGtuDirection().isPlus()
? position(ref.getLane(), getReference())
.minus(position(ref.getLane(), getReference(), plan.getStartTime()))
: position(ref.getLane(), getReference(), plan.getStartTime())
.minus(position(ref.getLane(), getReference()));
// Note that distance is valid as the reference lane can not change (and location of previous plan is start location
// of current plan). Only instantaneous lane changes can do that, which do not result in deviative plans.
}
else
{
covered = getOperationalPlan().getTraveledDistance(getSimulator().getSimulatorTime());
}
// generate the next operational plan and carry it out
// in case of an instantaneous lane change, fractionalLinkPositions will be accordingly adjusted to the new lane
super.move(fromLocation);
// update the positions on the lanes we are registered on
// WS: this was previously done using fractions calculated before super.move() based on the GTU position, but an
// instantaneous lane change while e.g. the nose is on the next lane which is curved, results in a different fraction on
// the next link (the GTU doesn't stretch or shrink)
Map<Link, Double> newLinkFractions = new LinkedHashMap<>(this.fractionalLinkPositions);
Set<Link> done = new LinkedHashSet<>();
// WS: this used to be on all current lanes, skipping links already processed, but 'covered' regards the reference lane
updateLinkFraction(getReferencePosition().getLane(), newLinkFractions, done, false, covered, true);
updateLinkFraction(getReferencePosition().getLane(), newLinkFractions, done, true, covered, true);
this.fractionalLinkPositions.clear();
this.fractionalLinkPositions.putAll(newLinkFractions);
DirectedLanePosition dlp = getReferencePosition();
fireTimedEvent(
LaneBasedGTU.LANEBASED_MOVE_EVENT,
new Object[] { getId(), new OTSPoint3D(fromLocation).doubleVector(PositionUnit.METER),
OTSPoint3D.direction(fromLocation, DirectionUnit.EAST_RADIAN), getSpeed(), getAcceleration(),
getTurnIndicatorStatus(), getOdometer(), dlp.getLane().getParentLink().getId(), dlp.getLane().getId(),
dlp.getPosition(), dlp.getGtuDirection().name() },
getSimulator().getSimulatorTime());
if (getOperationalPlan().getAcceleration(Duration.ZERO).si < -10
&& getOperationalPlan().getSpeed(Duration.ZERO).si > 2.5)
{
System.err.println("GTU: " + getId() + " - getOperationalPlan().getAcceleration(Duration.ZERO).si < -10)");
System.err.println("Lanes in current plan: " + this.currentLanes.keySet());
if (getTacticalPlanner().getPerception().contains(DefaultSimplePerception.class))
{
DefaultSimplePerception p =
getTacticalPlanner().getPerception().getPerceptionCategory(DefaultSimplePerception.class);
System.err.println("HeadwayGTU: " + p.getForwardHeadwayGTU());
System.err.println("HeadwayObject: " + p.getForwardHeadwayObject());
}
}
// DirectedPoint currentPointAfterMove = getLocation();
// if (currentPoint.distance(currentPointAfterMove) > 0.1)
// {
// System.err.println(this.getId() + " jumped");
// }
// schedule triggers and determine when to enter lanes with front and leave lanes with rear
scheduleEnterLeaveTriggers();
return false;
}
/**
* Recursive update of link fractions based on a moved distance.
* @param lane Lane; current lane, start with reference lane
* @param newLinkFractions Map<Link, Double>; map to put new fractions in
* @param done Set<Link>; links to skip as link are already done
* @param prevs boolean; whether to loop to the previous or next lanes, regardless of driving direction
* @param covered Length; covered distance along the reference lane
* @param isReferenceLane boolean; whether this lane is the reference lane (to skip in second call)
*/
private void updateLinkFraction(final Lane lane, final Map<Link, Double> newLinkFractions, final Set<Link> done,
final boolean prevs, final Length covered, final boolean isReferenceLane)
{
if (!prevs || !isReferenceLane)
{
if (done.contains(lane.getParentLink()) || !this.currentLanes.containsKey(lane))
{
return;
}
double sign;
try
{
sign = getDirection(lane).isPlus() ? 1.0 : -1.0;
}
catch (GTUException exception)
{
// can not happen as we check that the lane is in the currentLanes
throw new RuntimeException("Unexpected exception: trying to obtain direction on lane.", exception);
}
newLinkFractions.put(lane.getParentLink(),
this.fractionalLinkPositions.get(lane.getParentLink()) + sign * covered.si / lane.getLength().si);
done.add(lane.getParentLink());
}
for (Lane nextLane : (prevs ? lane.prevLanes(getGTUType()) : lane.nextLanes(getGTUType())).keySet())
{
updateLinkFraction(nextLane, newLinkFractions, done, prevs, covered, false);
}
}
/** {@inheritDoc} */
@Override
public final Map<Lane, Length> positions(final RelativePosition relativePosition) throws GTUException
{
return positions(relativePosition, getSimulator().getSimulatorTime());
}
/** {@inheritDoc} */
@Override
public final Map<Lane, Length> positions(final RelativePosition relativePosition, final Time when) throws GTUException
{
Map<Lane, Length> positions = new LinkedHashMap<>();
for (Lane lane : this.currentLanes.keySet())
{
positions.put(lane, position(lane, relativePosition, when));
}
return positions;
}
/** {@inheritDoc} */
@Override
public final Length position(final Lane lane, final RelativePosition relativePosition) throws GTUException
{
return position(lane, relativePosition, getSimulator().getSimulatorTime());
}
/**
* Return the longitudinal position that the indicated relative position of this GTU would have if it were to change to
* another Lane with a / the current CrossSectionLink. This point may be before the begin or after the end of the link of
* the projection lane of the GTU. This preserves the length of the GTU.
* @param projectionLane Lane; the lane onto which the position of this GTU must be projected
* @param relativePosition RelativePosition; the point on this GTU that must be projected
* @param when Time; the time for which to project the position of this GTU
* @return Length; the position of this GTU in the projectionLane
* @throws GTUException when projectionLane it not in any of the CrossSectionLink that the GTU is on
*/
@SuppressWarnings("checkstyle:designforextension")
public Length translatedPosition(final Lane projectionLane, final RelativePosition relativePosition, final Time when)
throws GTUException
{
CrossSectionLink link = projectionLane.getParentLink();
for (CrossSectionElement cse : link.getCrossSectionElementList())
{
if (cse instanceof Lane)
{
Lane cseLane = (Lane) cse;
if (null != this.currentLanes.get(cseLane))
{
double fractionalPosition = fractionalPosition(cseLane, RelativePosition.REFERENCE_POSITION, when);
Length pos = new Length(projectionLane.getLength().getSI() * fractionalPosition, LengthUnit.SI);
if (this.currentLanes.get(cseLane).isPlus())
{
return pos.plus(relativePosition.getDx());
}
return pos.minus(relativePosition.getDx());
}
}
}
throw new GTUException(this + " is not on any lane of Link " + link);
}
/**
* Return the longitudinal position on the projection lane that has the same fractional position on one of the current lanes
* of the indicated relative position. This preserves the fractional positions of all relative positions of the GTU.
* @param projectionLane Lane; the lane onto which the position of this GTU must be projected
* @param relativePosition RelativePosition; the point on this GTU that must be projected
* @param when Time; the time for which to project the position of this GTU
* @return Length; the position of this GTU in the projectionLane
* @throws GTUException when projectionLane it not in any of the CrossSectionLink that the GTU is on
*/
@SuppressWarnings("checkstyle:designforextension")
public Length projectedPosition(final Lane projectionLane, final RelativePosition relativePosition, final Time when)
throws GTUException
{
CrossSectionLink link = projectionLane.getParentLink();
for (CrossSectionElement cse : link.getCrossSectionElementList())
{
if (cse instanceof Lane)
{
Lane cseLane = (Lane) cse;
if (null != this.currentLanes.get(cseLane))
{
double fractionalPosition = fractionalPosition(cseLane, relativePosition, when);
return new Length(projectionLane.getLength().getSI() * fractionalPosition, LengthUnit.SI);
}
}
}
throw new GTUException(this + " is not on any lane of Link " + link);
}
/** caching of time field for last stored position(s). */
private double cachePositionsTime = Double.NaN;
/** caching of last stored position(s). */
private Map<Integer, Length> cachedPositions = new LinkedHashMap<>();
/** {@inheritDoc} */
@Override
@SuppressWarnings("checkstyle:designforextension")
public Length position(final Lane lane, final RelativePosition relativePosition, final Time when) throws GTUException
{
int cacheIndex = 0;
if (CACHING)
{
cacheIndex = 17 * lane.hashCode() + relativePosition.hashCode();
Length l;
if (when.si == this.cachePositionsTime && (l = this.cachedPositions.get(cacheIndex)) != null)
{
// PK verify the result; uncomment if you don't trust the cache
// this.cachedPositions.clear();
// Length difficultWay = position(lane, relativePosition, when);
// if (Math.abs(l.si - difficultWay.si) > 0.00001)
// {
// System.err.println("Whoops: cache returns bad value for GTU " + getId());
// }
CACHED_POSITION++;
return l;
}
if (when.si != this.cachePositionsTime)
{
this.cachedPositions.clear();
this.cachePositionsTime = when.si;
}
}
NON_CACHED_POSITION++;
synchronized (this.lock)
{
double loc = Double.NaN;
try
{
OperationalPlan plan = getOperationalPlan(when);
if (!(plan instanceof LaneBasedOperationalPlan) || !((LaneBasedOperationalPlan) plan).isDeviative())
{
double longitudinalPosition;
try
{
longitudinalPosition =
lane.positionSI(this.fractionalLinkPositions.get(when).get(lane.getParentLink()));
}
catch (NullPointerException exception)
{
throw exception;
}
if (this.currentLanes.get(when).get(lane).isPlus())
{
loc = longitudinalPosition + plan.getTraveledDistanceSI(when) + relativePosition.getDx().si;
}
else
{
loc = longitudinalPosition - plan.getTraveledDistanceSI(when) - relativePosition.getDx().si;
}
}
else
{
// deviative LaneBasedOperationalPlan, i.e. the GTU is not on a center line
DirectedPoint p = plan.getLocation(when, relativePosition);
double f = lane.getCenterLine().projectFractional(null, null, p.x, p.y, FractionalFallback.NaN);
if (!Double.isNaN(f))
{
loc = f * lane.getLength().si;
}
else
{
// the point does not project fractionally to this lane, it has to be up- or downstream of the lane
// simple heuristic to decide if we first look upstream or downstream
boolean upstream = this.fractionalLinkPositions.get(lane.getParentLink()) < 0.0 ? true : false;
// use loop up to 2 times (for loop creates 'loc not initialized' warning)
int i = 0;
while (true)
{
Set<Lane> otherLanesToConsider = new LinkedHashSet<>();
otherLanesToConsider.addAll(this.currentLanes.keySet());
double distance = getDistanceAtOtherLane(lane, when, upstream, 0.0, p, otherLanesToConsider);
// distance can be positive on an upstream lane due to a loop
if (!Double.isNaN(distance))
{
if (i == 1 && !Double.isNaN(loc))
{
// loc was determined in both loops, this constitutes a lane-loop, select nearest
double loc2 = upstream ? -distance : distance + lane.getLength().si;
double d1 = loc < 0.0 ? -loc : loc - lane.getLength().si;
double d2 = loc2 < 0.0 ? -loc2 : loc2 - lane.getLength().si;
loc = d1 < d2 ? loc : loc2;
break;
}
else
{
// loc was determined in second loop
loc = upstream ? -distance : distance + lane.getLength().si;
}
}
else if (!Double.isNaN(loc))
{
// loc was determined in first loop
break;
}
else if (i == 1)
{
// loc was determined in neither loop
// Lane change ended while moving to next link. The source lanes are left and for a leave-lane
// event the position is required. This may depend on upstream or downstream lanes as the
// reference position is projected to that lane. But if we already left that lane, we can't use
// it. We thus use ENDPOINT fallback instead.
loc = lane.getLength().si * lane.getCenterLine().projectFractional(null, null, p.x, p.y,
FractionalFallback.ENDPOINT);
break;
}
// try other direction
i++;
upstream = !upstream;
}
}
}
}
catch (NullPointerException e)
{
throw new GTUException("lanesCurrentOperationalPlan or fractionalLinkPositions is null", e);
}
catch (Exception e)
{
System.err.println(toString());
System.err.println(this.currentLanes.get(when));
System.err.println(this.fractionalLinkPositions.get(when));
throw new GTUException(e);
}
if (Double.isNaN(loc))
{
System.out.println("loc is NaN");
}
Length length = Length.instantiateSI(loc);
if (CACHING)
{
this.cachedPositions.put(cacheIndex, length);
}
return length;
}
}
/** Set of lane to attempt when determining the location with a deviative lane change. */
// private Set<Lane> otherLanesToConsider;
/**
* In case of a deviative operational plan (not on the center lines), positions are projected fractionally to the center
* lines. For points upstream or downstream of a lane, fractional projection is not valid. In such cases we need to project
* the position to an upstream or downstream lane instead, and adjust length along the center lines.
* @param lane Lane; lane to determine the position on
* @param when Time; time
* @param upstream boolean; whether to check upstream (or downstream)
* @param distance double; cumulative distance in recursive search, starts at 0.0
* @param point DirectedPoint; absolute point of GTU to be projected to center line
* @param otherLanesToConsider Set<Lane>; lanes to consider
* @return Length; position on lane being <0 or >{@code lane.getLength()}
* @throws GTUException if GTU is not on the lane
*/
private double getDistanceAtOtherLane(final Lane lane, final Time when, final boolean upstream, final double distance,
final DirectedPoint point, final Set<Lane> otherLanesToConsider) throws GTUException
{
Set<Lane> nextLanes = new LinkedHashSet<>(upstream == getDirection(lane).isPlus()
? lane.prevLanes(getGTUType()).keySet() : lane.nextLanes(getGTUType()).keySet()); // safe copy
nextLanes.retainAll(otherLanesToConsider); // as we delete here
if (!upstream && nextLanes.size() > 1)
{
LaneDirection laneDir = new LaneDirection(lane, getDirection(lane)).getNextLaneDirection(this);
if (nextLanes.contains(laneDir.getLane()))
{
nextLanes.clear();
nextLanes.add(laneDir.getLane());
}
else
{
getSimulator().getLogger().always().error("Distance on downstream lane could not be determined.");
}
}
// TODO When requesting the position at the end of the plan, which will be on a further lane, this lane is not yet
// part of the lanes in the current operational plan. This can be upstream or downstream depending on the direction of
// travel. We might check whether getDirection(lane)=DIR_PLUS and upstream=false, or getDirection(lane)=DIR_MINUS and
// upstream=true, to then use LaneDirection.getNextLaneDirection(this) to obtain the next lane. This is only required if
// nextLanes originally had more than 1 lane, otherwise we can simply use that one lane. Problem is that the search
// might go on far or even eternally (on a circular network), as projection simply keeps failing because the GTU is
// actually towards the other longitudinal direction. Hence, the heuristic used before this method is called should
// change and first always search against the direction of travel, and only consider lanes in currentLanes, while the
// consecutive search in the direction of travel should then always find a point. We could build in a counter to prevent
// a hanging software.
if (nextLanes.size() == 0)
{
return Double.NaN; // point must be in the other direction
}
Throw.when(nextLanes.size() > 1, IllegalStateException.class,
"A position (%s) of GTU %s is not on any of the current registered lanes.", point, this.getId());
Lane nextLane = nextLanes.iterator().next();
otherLanesToConsider.remove(lane);
double f = nextLane.getCenterLine().projectFractional(null, null, point.x, point.y, FractionalFallback.NaN);
if (Double.isNaN(f))
{
return getDistanceAtOtherLane(nextLane, when, upstream, distance + nextLane.getLength().si, point,
otherLanesToConsider);
}
return distance + (upstream == this.currentLanes.get(nextLane).isPlus() ? 1.0 - f : f) * nextLane.getLength().si;
}
/** Time of reference position cache. */
private double referencePositionTime = Double.NaN;
/** Cached reference position. */
private DirectedLanePosition cachedReferencePosition = null;
/** {@inheritDoc} */
@Override
@SuppressWarnings("checkstyle:designforextension")
public DirectedLanePosition getReferencePosition() throws GTUException
{
if (this.referencePositionTime == getSimulator().getSimulatorTime().si)
{
return this.cachedReferencePosition;
}
boolean anyOnLink = false;
Lane refLane = null;
double closest = Double.POSITIVE_INFINITY;
double minEps = Double.POSITIVE_INFINITY;
for (Lane lane : this.currentLanes.keySet())
{
double fraction = fractionalPosition(lane, getReference());
if (fraction >= 0.0 && fraction <= 1.0)
{
// TODO widest lane in case we are registered on more than one lane with the reference point?
// TODO lane that leads to our location or not if we are registered on parallel lanes?
if (!anyOnLink)
{
refLane = lane;
}
else
{
DirectedPoint loc = getLocation();
double f = lane.getCenterLine().projectFractional(null, null, loc.x, loc.y, FractionalFallback.ENDPOINT);
double distance = loc.distance(lane.getCenterLine().getLocationFractionExtended(f));
if (refLane != null && Double.isInfinite(closest))
{
f = refLane.getCenterLine().projectFractional(null, null, loc.x, loc.y, FractionalFallback.ENDPOINT);
closest = loc.distance(refLane.getCenterLine().getLocationFractionExtended(f));
}
if (distance < closest)
{
refLane = lane;
closest = distance;
}
}
anyOnLink = true;
}
else if (!anyOnLink && Double.isInfinite(closest))// && getOperationalPlan() instanceof LaneBasedOperationalPlan
// && ((LaneBasedOperationalPlan) getOperationalPlan()).isDeviative())
{
double eps = (fraction > 1.0 ? lane.getCenterLine().getLast() : lane.getCenterLine().getFirst())
.distanceSI(new OTSPoint3D(getLocation()));
if (eps < minEps)
{
minEps = eps;
refLane = lane;
}
}
}
if (refLane != null)
{
this.cachedReferencePosition =
new DirectedLanePosition(refLane, position(refLane, getReference()), this.getDirection(refLane));
this.referencePositionTime = getSimulator().getSimulatorTime().si;
return this.cachedReferencePosition;
}
// for (Lane lane : this.currentLanes.keySet())
// {
// Length relativePosition = position(lane, RelativePosition.REFERENCE_POSITION);
// System.err
// .println(String.format("Lane %s of Link %s: absolute position %s, relative position %5.1f%%", lane.getId(),
// lane.getParentLink().getId(), relativePosition, relativePosition.si * 100 / lane.getLength().si));
// }
throw new GTUException("The reference point of GTU " + this + " is not on any of the lanes on which it is registered");
}
/**
* Schedule the triggers for this GTU that are going to happen until the next evaluation time. Also schedule the
* registration and deregistration of lanes when the vehicle enters or leaves them, at the exact right time. <br>
* Note: when the GTU makes a lane change, the vehicle will be registered for both lanes during the entire maneuver.
* @throws NetworkException on network inconsistency
* @throws SimRuntimeException should never happen
* @throws GTUException when a branch is reached where the GTU does not know where to go next
*/
@SuppressWarnings("checkstyle:designforextension")
protected void scheduleEnterLeaveTriggers() throws NetworkException, SimRuntimeException, GTUException
{
LaneBasedOperationalPlan plan = null;
double moveSI;
if (getOperationalPlan() instanceof LaneBasedOperationalPlan)
{
plan = (LaneBasedOperationalPlan) getOperationalPlan();
moveSI = plan.getTotalLengthAlongLane(this).si;
}
else
{
moveSI = getOperationalPlan().getTotalLength().si;
}
// Figure out which lanes this GTU will enter with its FRONT, and schedule the lane enter events
Map<Lane, GTUDirectionality> lanesCopy = new LinkedHashMap<>(this.currentLanes);
Iterator<Lane> it = lanesCopy.keySet().iterator();
Lane enteredLane = null;
// LateralDirectionality forceSide = LateralDirectionality.NONE;
while (it.hasNext() || enteredLane != null) // use a copy because this.currentLanes can change
{
// next lane from 'lanesCopy', or asses the lane we just entered as it may be very short and also passed fully
Lane lane;
GTUDirectionality laneDir;
if (enteredLane == null)
{
lane = it.next();
laneDir = lanesCopy.get(lane);
}
else
{
lane = enteredLane;
laneDir = this.currentLanes.get(lane);
}
double sign = laneDir.isPlus() ? 1.0 : -1.0;
enteredLane = null;
// skip if already on next lane
if (!Collections.disjoint(this.currentLanes.keySet(),
lane.downstreamLanes(laneDir, getGTUType()).keySet().toCollection()))
{
continue;
}
// schedule triggers on this lane
double referenceStartSI = this.fractionalLinkPositions.get(lane.getParentLink()) * lane.getLength().getSI();
// referenceStartSI is position of reference of GTU on current lane
if (laneDir.isPlus())
{
lane.scheduleSensorTriggers(this, referenceStartSI, moveSI);
}
else
{
lane.scheduleSensorTriggers(this, referenceStartSI - moveSI, moveSI);
}
double nextFrontPosSI = referenceStartSI + sign * (moveSI + getFront().getDx().si);
Lane nextLane = null;
GTUDirectionality nextDirection = null;
Length refPosAtLastTimestep = null;
DirectedPoint end = null;
if (laneDir.isPlus() ? nextFrontPosSI > lane.getLength().si : nextFrontPosSI < 0.0)
{
LaneDirection next = new LaneDirection(lane, laneDir).getNextLaneDirection(this);
if (null == next)
{
// A sink should delete the GTU, or a lane change should end, before reaching the end of the lane
continue;
}
nextLane = next.getLane();
nextDirection = next.getDirection();
double endPos = laneDir.isPlus() ? lane.getLength().si - getFront().getDx().si : getFront().getDx().si;
Lane endLane = lane;
GTUDirectionality endLaneDir = laneDir;
while (endLaneDir.isPlus() ? endPos < 0.0 : endPos > endLane.getLength().si)
{
// GTU front is more than lane length, so end location can not be extracted from the lane, let's move then
Map<Lane, GTUDirectionality> map = endLane.upstreamLanes(endLaneDir, getGTUType()).toMap();
map.keySet().retainAll(this.currentLanes.keySet());
double remain = endLaneDir.isPlus() ? -endPos : endPos - endLane.getLength().si;
endLane = map.keySet().iterator().next();
endLaneDir = map.get(endLane);
endPos = endLaneDir.isPlus() ? endLane.getLength().si - remain : remain;
}
end = endLane.getCenterLine().getLocationExtendedSI(endPos);
if (laneDir.isPlus())
{
refPosAtLastTimestep = nextDirection.isPlus() ? Length.instantiateSI(referenceStartSI - lane.getLength().si)
: Length.instantiateSI(nextLane.getLength().si - referenceStartSI + lane.getLength().si);
}
else
{
refPosAtLastTimestep = nextDirection.isPlus() ? Length.instantiateSI(-referenceStartSI)
: Length.instantiateSI(nextLane.getLength().si + referenceStartSI);
}
}
if (end != null)
{
Time enterTime = getOperationalPlan().timeAtPoint(end, false);
if (enterTime != null)
{
if (Double.isNaN(enterTime.si))
{
// TODO: this escape was in timeAtPoint, where it was changed to return null for leave lane events
enterTime = Time.instantiateSI(getOperationalPlan().getEndTime().si - 1e-9);
// -1e-9 prevents that next move() reschedules enter
}
addLaneToGtu(nextLane, refPosAtLastTimestep, nextDirection);
enteredLane = nextLane;
Length coveredDistance;
if (plan == null || !plan.isDeviative())
{
try
{
coveredDistance = getOperationalPlan().getTraveledDistance(enterTime);
}
catch (OperationalPlanException exception)
{
throw new RuntimeException("Enter time of lane beyond plan.", exception);
}
}
else
{
coveredDistance = plan.getDistanceAlongLane(this, end);
}
SimEventInterface<SimTimeDoubleUnit> event = getSimulator().scheduleEventAbs(enterTime, this, this,
"addGtuToLane", new Object[] { nextLane, refPosAtLastTimestep.plus(coveredDistance) });
addEnterTrigger(nextLane, event);
}
}
}
// Figure out which lanes this GTU will exit with its BACK, and schedule the lane exit events
for (Lane lane : this.currentLanes.keySet())
{
double referenceStartSI = this.fractionalLinkPositions.get(lane.getParentLink()) * lane.getLength().getSI();
Time exitTime = null;
GTUDirectionality laneDir = getDirection(lane);
if (plan == null || !plan.isDeviative())
{
double sign = laneDir.isPlus() ? 1.0 : -1.0;
double nextRearPosSI = referenceStartSI + sign * (getRear().getDx().si + moveSI);
if (laneDir.isPlus() ? nextRearPosSI > lane.getLength().si : nextRearPosSI < 0.0)
{
exitTime = getOperationalPlan().timeAtDistance(
Length.instantiateSI((laneDir.isPlus() ? lane.getLength().si - referenceStartSI : referenceStartSI)
- getRear().getDx().si));
}
}
else
{
DirectedPoint end = null;
double endPos = laneDir.isPlus() ? lane.getLength().si - getRear().getDx().si : getRear().getDx().si;
Lane endLane = lane;
GTUDirectionality endLaneDir = laneDir;
while (endLaneDir.isPlus() ? endPos > endLane.getLength().si : endPos < 0.0)
{
Map<Lane, GTUDirectionality> map = endLane.downstreamLanes(endLaneDir, getGTUType()).toMap();
map.keySet().retainAll(this.currentLanes.keySet());
if (!map.isEmpty())
{
double remain = endLaneDir.isPlus() ? endPos - endLane.getLength().si : -endPos;
endLane = map.keySet().iterator().next();
endLaneDir = map.get(endLane);
endPos = endLaneDir.isPlus() ? remain : endLane.getLength().si - remain;
}
else
{
endPos = endLaneDir.isPlus() ? endLane.getLength().si - getRear().getDx().si : getRear().getDx().si;
break;
}
}
end = endLane.getCenterLine().getLocationExtendedSI(endPos);
if (end != null)
{
exitTime = getOperationalPlan().timeAtPoint(end, false);
if (Double.isNaN(exitTime.si))
{
// code below will leave entered lanes if exitTime is null, make this so if NaN results due to the lane
// end being beyond the plan (rather than the GTU never having been there, but being registered there
// upon lane change initiation)
double sign = laneDir.isPlus() ? 1.0 : -1.0;
double nextRearPosSI = referenceStartSI + sign * (getRear().getDx().si + moveSI);
if (laneDir.isPlus() ? nextRearPosSI < lane.getLength().si : nextRearPosSI > 0.0)
{
exitTime = null;
}
}
}
}
if (exitTime != null && !Double.isNaN(exitTime.si))
{
SimEvent<SimTimeDoubleUnit> event = new SimEvent<>(new SimTimeDoubleUnit(exitTime), this, this, "leaveLane",
new Object[] { lane, new Boolean(false) });
getSimulator().scheduleEvent(event);
addTrigger(lane, event);
}
else if (exitTime != null && this.enteredLanes.contains(lane))
{
// This lane was entered when initiating the lane change due to a fractional calculation. Now, the deviative
// plan indicates we will never reach this location.
SimEvent<SimTimeDoubleUnit> event = new SimEvent<>(getSimulator().getSimTime(), this, this, "leaveLane",
new Object[] { lane, new Boolean(false) });
getSimulator().scheduleEvent(event);
addTrigger(lane, event);
}
}
this.enteredLanes.clear();
}
/** {@inheritDoc} */
@Override
public final Map<Lane, Double> fractionalPositions(final RelativePosition relativePosition) throws GTUException
{
return fractionalPositions(relativePosition, getSimulator().getSimulatorTime());
}
/** {@inheritDoc} */
@Override
public final Map<Lane, Double> fractionalPositions(final RelativePosition relativePosition, final Time when)
throws GTUException
{
Map<Lane, Double> positions = new LinkedHashMap<>();
for (Lane lane : this.currentLanes.keySet())
{
positions.put(lane, fractionalPosition(lane, relativePosition, when));
}
return positions;
}
/** {@inheritDoc} */
@Override
public final double fractionalPosition(final Lane lane, final RelativePosition relativePosition, final Time when)
throws GTUException
{
return position(lane, relativePosition, when).getSI() / lane.getLength().getSI();
}
/** {@inheritDoc} */
@Override
public final double fractionalPosition(final Lane lane, final RelativePosition relativePosition) throws GTUException
{
return position(lane, relativePosition).getSI() / lane.getLength().getSI();
}
/** {@inheritDoc} */
@Override
public final void addTrigger(final Lane lane, final SimEventInterface<SimTimeDoubleUnit> event)
{
List<SimEventInterface<SimTimeDoubleUnit>> list = this.pendingLeaveTriggers.get(lane);
if (null == list)
{
list = new ArrayList<>();
}
list.add(event);
this.pendingLeaveTriggers.put(lane, list);
}
/**
* Add enter trigger.
* @param lane Lane; lane
* @param event SimEventInterface<SimTimeDoubleUnit>; event
*/
private void addEnterTrigger(final Lane lane, final SimEventInterface<SimTimeDoubleUnit> event)
{
List<SimEventInterface<SimTimeDoubleUnit>> list = this.pendingEnterTriggers.get(lane);
if (null == list)
{
list = new ArrayList<>();
}
list.add(event);
this.pendingEnterTriggers.put(lane, list);
}
/**
* Sets a vehicle model.
* @param vehicleModel VehicleModel; vehicle model
*/
public void setVehicleModel(final VehicleModel vehicleModel)
{
this.vehicleModel = vehicleModel;
}
/** {@inheritDoc} */
@Override
public VehicleModel getVehicleModel()
{
return this.vehicleModel;
}
/** {@inheritDoc} */
@Override
@SuppressWarnings("checkstyle:designforextension")
public void destroy()
{
DirectedLanePosition dlp = null;
try
{
dlp = getReferencePosition();
}
catch (GTUException e)
{
// ignore. not important at destroy
}
DirectedPoint location = this.getOperationalPlan() == null ? new DirectedPoint(0.0, 0.0, 0.0) : getLocation();
synchronized (this.lock)
{
Set<Lane> laneSet = new LinkedHashSet<>(this.currentLanes.keySet()); // Operate on a copy of the key
// set
for (Lane lane : laneSet)
{
try
{
leaveLane(lane, true);
}
catch (GTUException e)
{
// ignore. not important at destroy
}
}
}
if (dlp != null && dlp.getLane() != null)
{
Lane referenceLane = dlp.getLane();
fireTimedEvent(LaneBasedGTU.LANEBASED_DESTROY_EVENT,
new Object[] { getId(), location, getOdometer(), referenceLane, dlp.getPosition(), dlp.getGtuDirection() },
getSimulator().getSimulatorTime());
}
else
{
fireTimedEvent(LaneBasedGTU.LANEBASED_DESTROY_EVENT,
new Object[] { getId(), location, getOdometer(), null, Length.ZERO, null },
getSimulator().getSimulatorTime());
}
if (this.finalizeLaneChangeEvent != null)
{
getSimulator().cancelEvent(this.finalizeLaneChangeEvent);
}
super.destroy();
}
/** {@inheritDoc} */
@Override
public final Bounds getBounds()
{
double dx = 0.5 * getLength().doubleValue();
double dy = 0.5 * getWidth().doubleValue();
return new BoundingBox(new Point3d(-dx, -dy, 0.0), new Point3d(dx, dy, 0.0));
}
/** {@inheritDoc} */
@Override
public final LaneBasedStrategicalPlanner getStrategicalPlanner()
{
return (LaneBasedStrategicalPlanner) super.getStrategicalPlanner();
}
/** {@inheritDoc} */
@Override
public final LaneBasedStrategicalPlanner getStrategicalPlanner(final Time time)
{
return (LaneBasedStrategicalPlanner) super.getStrategicalPlanner(time);
}
/** {@inheritDoc} */
@Override
public RoadNetwork getNetwork()
{
return (RoadNetwork) super.getPerceivableContext();
}
/** {@inheritDoc} */
@Override
public Speed getDesiredSpeed()
{
Time simTime = getSimulator().getSimulatorTime();
if (this.desiredSpeedTime == null || this.desiredSpeedTime.si < simTime.si)
{
InfrastructurePerception infra =
getTacticalPlanner().getPerception().getPerceptionCategoryOrNull(InfrastructurePerception.class);
SpeedLimitInfo speedInfo;
if (infra == null)
{
speedInfo = new SpeedLimitInfo();
speedInfo.addSpeedInfo(SpeedLimitTypes.MAX_VEHICLE_SPEED, getMaximumSpeed());
}
else
{
// Throw.whenNull(infra, "InfrastructurePerception is required to determine the desired speed.");
speedInfo = infra.getSpeedLimitProspect(RelativeLane.CURRENT).getSpeedLimitInfo(Length.ZERO);
}
this.cachedDesiredSpeed =
Try.assign(() -> getTacticalPlanner().getCarFollowingModel().desiredSpeed(getParameters(), speedInfo),
"Parameter exception while obtaining the desired speed.");
this.desiredSpeedTime = simTime;
}
return this.cachedDesiredSpeed;
}
/** {@inheritDoc} */
@Override
public Acceleration getCarFollowingAcceleration()
{
Time simTime = getSimulator().getSimulatorTime();
if (this.carFollowingAccelerationTime == null || this.carFollowingAccelerationTime.si < simTime.si)
{
LanePerception perception = getTacticalPlanner().getPerception();
// speed
EgoPerception<?, ?> ego = perception.getPerceptionCategoryOrNull(EgoPerception.class);
Throw.whenNull(ego, "EgoPerception is required to determine the speed.");
Speed speed = ego.getSpeed();
// speed limit info
InfrastructurePerception infra = perception.getPerceptionCategoryOrNull(InfrastructurePerception.class);
Throw.whenNull(infra, "InfrastructurePerception is required to determine the desired speed.");
SpeedLimitInfo speedInfo = infra.getSpeedLimitProspect(RelativeLane.CURRENT).getSpeedLimitInfo(Length.ZERO);
// leaders
NeighborsPerception neighbors = perception.getPerceptionCategoryOrNull(NeighborsPerception.class);
Throw.whenNull(neighbors, "NeighborsPerception is required to determine the car-following acceleration.");
PerceptionCollectable<HeadwayGTU, LaneBasedGTU> leaders = neighbors.getLeaders(RelativeLane.CURRENT);
// obtain
this.cachedCarFollowingAcceleration =
Try.assign(() -> getTacticalPlanner().getCarFollowingModel().followingAcceleration(getParameters(), speed,
speedInfo, leaders), "Parameter exception while obtaining the desired speed.");
this.carFollowingAccelerationTime = simTime;
}
return this.cachedCarFollowingAcceleration;
}
/** {@inheritDoc} */
@Override
public final TurnIndicatorStatus getTurnIndicatorStatus()
{
return this.turnIndicatorStatus.get();
}
/** {@inheritDoc} */
@Override
public final TurnIndicatorStatus getTurnIndicatorStatus(final Time time)
{
return this.turnIndicatorStatus.get(time);
}
/** {@inheritDoc} */
@Override
public final void setTurnIndicatorStatus(final TurnIndicatorStatus turnIndicatorStatus)
{
this.turnIndicatorStatus.set(turnIndicatorStatus);
}
/** {@inheritDoc} */
@Override
@SuppressWarnings("checkstyle:designforextension")
public String toString()
{
return String.format("GTU " + getId());
}
}