OtsLine2d.java
- package org.opentrafficsim.core.geometry;
- import java.awt.geom.Line2D;
- import java.awt.geom.Path2D;
- import java.awt.geom.PathIterator;
- import java.awt.geom.Point2D;
- import java.io.Serializable;
- import java.util.ArrayList;
- import java.util.Arrays;
- import java.util.List;
- import org.djunits.unit.DirectionUnit;
- import org.djunits.value.vdouble.scalar.Direction;
- import org.djunits.value.vdouble.scalar.Length;
- import org.djutils.draw.bounds.Bounds2d;
- import org.djutils.draw.line.PolyLine2d;
- import org.djutils.draw.line.Ray2d;
- import org.djutils.draw.point.OrientedPoint2d;
- import org.djutils.draw.point.Point2d;
- import org.djutils.exceptions.Throw;
- import org.djutils.exceptions.Try;
- import nl.tudelft.simulation.dsol.animation.Locatable;
- /**
- * Line with underlying PolyLine2d, a cached length indexed line, a cached length, and a cached centroid (all calculated on
- * first use). This class supports fractional projection.
- * <p>
- * Copyright (c) 2013-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
- * BSD-style license. See <a href="https://opentrafficsim.org/docs/license.html">OpenTrafficSim License</a>.
- * </p>
- * @author <a href="https://github.com/averbraeck">Alexander Verbraeck</a>
- * @author <a href="https://tudelft.nl/staff/p.knoppers-1">Peter Knoppers</a>
- * @author <a href="https://www.citg.tudelft.nl">Guus Tamminga</a>
- * @author <a href="https://github.com/wjschakel">Wouter Schakel</a>
- */
- public class OtsLine2d implements Locatable, Serializable
- {
- /** */
- private static final long serialVersionUID = 20150722L;
- /** The 2d line. */
- private PolyLine2d line2d;
- /** The cumulative length of the line at point 'i'. */
- private double[] lengthIndexedLine = null;
- /** The cached length; will be calculated at time of construction. */
- private Length length;
- /** The cached centroid; will be calculated when needed for the first time. */
- private Point2d centroid = null;
- /** The cached bounds; will be calculated when needed for the first time. */
- private Bounds2d bounds = null;
- /** The cached helper points for fractional projection; will be calculated when needed for the first time. */
- private Point2d[] fractionalHelperCenters = null;
- /** The cached helper directions for fractional projection; will be calculated when needed for the first time. */
- private Point2D.Double[] fractionalHelperDirections = null;
- /** Intersection of unit offset lines of first two segments. */
- private Point2d firstOffsetIntersection;
- /** Intersection of unit offset lines of last two segments. */
- private Point2d lastOffsetIntersection;
- /** Precision for fractional projection algorithm. */
- private static final double FRAC_PROJ_PRECISION = 2e-5 /* PK too fine 1e-6 */;
- /** Radius at each vertex. */
- private Length[] vertexRadii;
- /**
- * Construct a new OtsLine2d.
- * @param points Point2d...; the array of points to construct this OtsLine2d from.
- */
- public OtsLine2d(final Point2d... points)
- {
- this(new PolyLine2d(points));
- }
- /**
- * Creates a new OtsLine2d based on 2d information. Elevation will be 0.
- * @param line2d PolyLine2d; 2d information.
- */
- public OtsLine2d(final PolyLine2d line2d)
- {
- init(line2d);
- }
- /**
- * Construct a new OtsLine2d, and immediately make the length-indexed line.
- * @param line2d PolyLine2d; the 2d line.
- */
- private void init(final PolyLine2d line2d)
- {
- this.lengthIndexedLine = new double[line2d.size()];
- this.lengthIndexedLine[0] = 0.0;
- for (int i = 1; i < line2d.size(); i++)
- {
- this.lengthIndexedLine[i] = this.lengthIndexedLine[i - 1] + line2d.get(i - 1).distance(line2d.get(i));
- }
- this.line2d = line2d;
- this.length = Length.instantiateSI(this.lengthIndexedLine[this.lengthIndexedLine.length - 1]);
- }
- /**
- * Construct parallel line.<br>
- * @param offset double; offset distance from the reference line; positive is LEFT, negative is RIGHT
- * @return OtsLine2d; the line that has the specified offset from the reference line
- */
- public final OtsLine2d offsetLine(final double offset)
- {
- return new OtsLine2d(this.line2d.offsetLine(offset));
- }
- /**
- * Clean up a list of points that describe a polyLine by removing points that lie within epsilon distance of a more
- * straightened version of the line. <br>
- * @param epsilon double; maximal deviation
- * @param useHorizontalDistance boolean; if true; the horizontal distance is used; if false; the 3D distance is used
- * @return OtsLine2d; a new OtsLine2d containing all the remaining points
- */
- @Deprecated
- public final OtsLine2d noiseFilterRamerDouglasPeucker(final double epsilon, final boolean useHorizontalDistance)
- {
- // Apply the Ramer-Douglas-Peucker algorithm to the buffered points.
- // Adapted from https://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm
- double maxDeviation = 0;
- int splitIndex = -1;
- int pointCount = size();
- // Find the point with largest deviation from the straight line from start point to end point
- for (int i = 1; i < pointCount - 1; i++)
- {
- Point2d point = this.line2d.get(i);
- Point2d closest = point.closestPointOnLine(this.line2d.get(0), this.line2d.get(pointCount - 1));
- double deviation = useHorizontalDistance ? closest.distance(point) : closest.distance(point);
- if (deviation > maxDeviation)
- {
- splitIndex = i;
- maxDeviation = deviation;
- }
- }
- if (maxDeviation <= epsilon)
- {
- // All intermediate points can be dropped. Return a new list containing only the first and last point.
- return new OtsLine2d(this.line2d.get(0), this.line2d.get(pointCount - 1));
- }
- // The largest deviation is larger than epsilon.
- // Split the polyLine at the point with the maximum deviation. Process each sub list recursively and concatenate the
- // results
- List<Point2d> points = this.line2d.getPointList();
- OtsLine2d first = new OtsLine2d(points.subList(0, splitIndex + 1).toArray(new Point2d[splitIndex + 1]))
- .noiseFilterRamerDouglasPeucker(epsilon, useHorizontalDistance);
- OtsLine2d second = new OtsLine2d(
- points.subList(splitIndex, this.line2d.size()).toArray(new Point2d[this.line2d.size() - splitIndex]))
- .noiseFilterRamerDouglasPeucker(epsilon, useHorizontalDistance);
- return concatenate(epsilon, first, second);
- }
- /**
- * Returns a 2d representation of this line.
- * @return PolyLine2d; Returns a 2d representation of this line.
- */
- public PolyLine2d getLine2d()
- {
- return this.line2d;
- }
- /**
- * Create a line at linearly varying offset from this line. The offset may change linearly from its initial value at the
- * start of the reference line to its final offset value at the end of the reference line.
- * @param offsetAtStart double; offset at the start of the reference line (positive value is Left, negative value is Right)
- * @param offsetAtEnd double; offset at the end of the reference line (positive value is Left, negative value is Right)
- * @return OtsLine2d; the OtsLine2d of the line at linearly changing offset of the reference line
- */
- public final OtsLine2d offsetLine(final double offsetAtStart, final double offsetAtEnd)
- {
- return new OtsLine2d(this.line2d.offsetLine(offsetAtStart, offsetAtEnd));
- }
- /**
- * Create a line at linearly varying offset from this line. The offset may change linearly from its initial value at the
- * start of the reference line via a number of intermediate offsets at intermediate positions to its final offset value at
- * the end of the reference line.
- * @param relativeFractions double[]; positional fractions for which the offsets have to be generated
- * @param offsets double[]; offsets at the relative positions (positive value is Left, negative value is Right)
- * @return Geometry; the Geometry of the line at linearly changing offset of the reference line
- * @throws OtsGeometryException when this method fails to create the offset line
- */
- public final OtsLine2d offsetLine(final double[] relativeFractions, final double[] offsets) throws OtsGeometryException
- {
- return new OtsLine2d(OtsGeometryUtil.offsetLine(this.line2d, relativeFractions, offsets));
- }
- /**
- * Concatenate several OtsLine2d instances.
- * @param lines OtsLine2d...; OtsLine2d... one or more OtsLine2d. The last point of the first
- * <strong>must</strong> match the first of the second, etc.
- * @return OtsLine2d
- */
- public static OtsLine2d concatenate(final OtsLine2d... lines)
- {
- return concatenate(0.0, lines);
- }
- /**
- * Concatenate two OtsLine2d instances. This method is separate for efficiency reasons.
- * @param toleranceSI double; the tolerance between the end point of a line and the first point of the next line
- * @param line1 OtsLine2d; first line
- * @param line2 OtsLine2d; second line
- * @return OtsLine2d
- */
- public static OtsLine2d concatenate(final double toleranceSI, final OtsLine2d line1, final OtsLine2d line2)
- {
- return new OtsLine2d(PolyLine2d.concatenate(toleranceSI, line1.line2d, line2.line2d));
- }
- /**
- * Concatenate several OtsLine2d instances.
- * @param toleranceSI double; the tolerance between the end point of a line and the first point of the next line
- * @param lines OtsLine2d...; OtsLine2d... one or more OtsLine2d. The last point of the first
- * <strong>must</strong> match the first of the second, etc.
- * @return OtsLine2d
- */
- public static OtsLine2d concatenate(final double toleranceSI, final OtsLine2d... lines)
- {
- List<PolyLine2d> lines2d = new ArrayList<>();
- for (OtsLine2d line : lines)
- {
- lines2d.add(line.line2d);
- }
- return new OtsLine2d(PolyLine2d.concatenate(toleranceSI, lines2d.toArray(new PolyLine2d[lines.length])));
- }
- /**
- * Construct a new OtsLine2d with all points of this OtsLine2d in reverse order.
- * @return OtsLine2d; the new OtsLine2d
- */
- public final OtsLine2d reverse()
- {
- return new OtsLine2d(this.line2d.reverse());
- }
- /**
- * Construct a new OtsLine2d covering the indicated fraction of this OtsLine2d.
- * @param start double; starting point, valid range [0..<cite>end</cite>)
- * @param end double; ending point, valid range (<cite>start</cite>..1]
- * @return OtsLine2d; the new OtsLine2d
- */
- public final OtsLine2d extractFractional(final double start, final double end)
- {
- return extract(start * this.length.si, end * this.length.si);
- }
- /**
- * Create a new OtsLine2d that covers a sub-section of this OtsLine2d.
- * @param start Length; the length along this OtsLine2d where the sub-section starts, valid range [0..<cite>end</cite>)
- * @param end Length; length along this OtsLine2d where the sub-section ends, valid range
- * (<cite>start</cite>..<cite>length</cite> (length is the length of this OtsLine2d)
- * @return OtsLine2d; the selected sub-section
- */
- public final OtsLine2d extract(final Length start, final Length end)
- {
- return extract(start.si, end.si);
- }
- /**
- * Create a new OtsLine2d that covers a sub-section of this OtsLine2d.
- * @param start double; length along this OtsLine2d where the sub-section starts, valid range [0..<cite>end</cite>)
- * @param end double; length along this OtsLine2d where the sub-section ends, valid range
- * (<cite>start</cite>..<cite>length</cite> (length is the length of this OtsLine2d)
- * @return OtsLine2d; the selected sub-section
- */
- public final OtsLine2d extract(final double start, final double end)
- {
- return new OtsLine2d(this.line2d.extract(start, end));
- }
- /**
- * Create an OtsLine2d, while cleaning repeating successive points.
- * @param points Point2d...; the coordinates of the line as OtsPoint3d
- * @return the line
- * @throws OtsGeometryException when number of points < 2
- */
- public static OtsLine2d createAndCleanOtsLine2d(final Point2d... points) throws OtsGeometryException
- {
- if (points.length < 2)
- {
- throw new OtsGeometryException(
- "Degenerate OtsLine2d; has " + points.length + " point" + (points.length != 1 ? "s" : ""));
- }
- return createAndCleanOtsLine2d(new ArrayList<>(Arrays.asList(points)));
- }
- /**
- * Create an OtsLine2d, while cleaning repeating successive points.
- * @param pointList List<Point2d>; list of the coordinates of the line as OtsPoint3d; any duplicate points in this
- * list are removed (this method may modify the provided list)
- * @return OtsLine2d; the line
- * @throws OtsGeometryException when number of non-equal points < 2
- */
- public static OtsLine2d createAndCleanOtsLine2d(final List<Point2d> pointList) throws OtsGeometryException
- {
- return new OtsLine2d(new PolyLine2d(true, pointList));
- }
- /**
- * Construct a new OtsLine2d from a List<OtsPoint3d>.
- * @param pointList List<OtsPoint3d>; the list of points to construct this OtsLine2d from.
- * @throws OtsGeometryException when the provided points do not constitute a valid line (too few points or identical
- * adjacent points)
- */
- public OtsLine2d(final List<Point2d> pointList) throws OtsGeometryException
- {
- this(pointList.toArray(new Point2d[pointList.size()]));
- }
- /**
- * Construct a new OtsShape (closed shape) from a Path2D. Elevation will be 0.
- * @param path Path2D; the Path2D to construct this OtsLine2d from.
- * @throws OtsGeometryException when the provided points do not constitute a valid line (too few points or identical
- * adjacent points)
- */
- public OtsLine2d(final Path2D path) throws OtsGeometryException
- {
- List<Point2d> pl = new ArrayList<>();
- for (PathIterator pi = path.getPathIterator(null); !pi.isDone(); pi.next())
- {
- double[] p = new double[6];
- int segType = pi.currentSegment(p);
- if (segType == PathIterator.SEG_MOVETO || segType == PathIterator.SEG_LINETO)
- {
- pl.add(new Point2d(p[0], p[1]));
- }
- else if (segType == PathIterator.SEG_CLOSE)
- {
- if (!pl.get(0).equals(pl.get(pl.size() - 1)))
- {
- pl.add(new Point2d(pl.get(0).x, pl.get(0).y));
- }
- break;
- }
- }
- init(new PolyLine2d(pl.toArray(new Point2d[pl.size() - 1])));
- }
- /**
- * Return the number of points in this OtsLine2d. This is the number of points in horizontal plane.
- * @return the number of points on the line
- */
- public final int size()
- {
- return this.line2d.size();
- }
- /**
- * Return the first point of this OtsLine2d.
- * @return the first point on the line
- */
- public final Point2d getFirst()
- {
- return this.line2d.getFirst();
- }
- /**
- * Return the last point of this OtsLine2d.
- * @return the last point on the line
- */
- public final Point2d getLast()
- {
- return this.line2d.getLast();
- }
- /**
- * Return one point of this OtsLine2d.
- * @param i int; the index of the point to retrieve
- * @return Point2d; the i-th point of the line
- * @throws OtsGeometryException when i < 0 or i > the number of points
- */
- public final Point2d get(final int i) throws OtsGeometryException
- {
- if (i < 0 || i > size() - 1)
- {
- throw new OtsGeometryException("OtsLine2d.get(i=" + i + "); i<0 or i>=size(), which is " + size());
- }
- return this.line2d.get(i);
- }
- /**
- * Return the length of this OtsLine2d in meters. (Assuming that the coordinates of the points constituting this line are
- * expressed in meters.)
- * @return the length of the line
- */
- public final Length getLength()
- {
- return this.length;
- }
- /**
- * Return an array of OtsPoint3d that represents this OtsLine2d.
- * @return the points of this line
- */
- public final Point2d[] getPoints()
- {
- return this.line2d.getPointList().toArray(new Point2d[this.line2d.size()]);
- }
- /**
- * Get the location at a position on the line, with its direction. Position can be below 0 or more than the line length. In
- * that case, the position will be extrapolated in the direction of the line at its start or end.
- * @param position Length; the position on the line for which to calculate the point on, before, of after the line
- * @return a directed point
- */
- public final OrientedPoint2d getLocationExtended(final Length position)
- {
- return getLocationExtendedSI(position.getSI());
- }
- /**
- * Get the location at a position on the line, with its direction. Position can be below 0 or more than the line length. In
- * that case, the position will be extrapolated in the direction of the line at its start or end.
- * @param positionSI double; the position on the line for which to calculate the point on, before, of after the line, in SI
- * units
- * @return a directed point
- */
- public final synchronized OrientedPoint2d getLocationExtendedSI(final double positionSI)
- {
- Ray2d ray = this.line2d.getLocationExtended(positionSI);
- return new OrientedPoint2d(ray.x, ray.y, ray.phi);
- }
- /**
- * Get the location at a fraction of the line, with its direction. Fraction should be between 0.0 and 1.0.
- * @param fraction double; the fraction for which to calculate the point on the line
- * @return a directed point
- * @throws OtsGeometryException when fraction less than 0.0 or more than 1.0.
- */
- public final OrientedPoint2d getLocationFraction(final double fraction) throws OtsGeometryException
- {
- if (fraction < 0.0 || fraction > 1.0)
- {
- throw new OtsGeometryException("getLocationFraction for line: fraction < 0.0 or > 1.0. fraction = " + fraction);
- }
- return getLocationSI(fraction * this.length.si);
- }
- /**
- * Get the location at a fraction of the line, with its direction. Fraction should be between 0.0 and 1.0.
- * @param fraction double; the fraction for which to calculate the point on the line
- * @param tolerance double; the delta from 0.0 and 1.0 that will be forgiven
- * @return a directed point
- * @throws OtsGeometryException when fraction less than 0.0 or more than 1.0.
- */
- public final OrientedPoint2d getLocationFraction(final double fraction, final double tolerance) throws OtsGeometryException
- {
- if (fraction < -tolerance || fraction > 1.0 + tolerance)
- {
- throw new OtsGeometryException(
- "getLocationFraction for line: fraction < 0.0 - tolerance or > 1.0 + tolerance; fraction = " + fraction);
- }
- double f = fraction < 0 ? 0.0 : fraction > 1.0 ? 1.0 : fraction;
- return getLocationSI(f * this.length.si);
- }
- /**
- * Get the location at a fraction of the line (or outside the line), with its direction.
- * @param fraction double; the fraction for which to calculate the point on the line
- * @return a directed point
- */
- public final OrientedPoint2d getLocationFractionExtended(final double fraction)
- {
- return getLocationExtendedSI(fraction * this.length.si);
- }
- /**
- * Get the location at a position on the line, with its direction. Position should be between 0.0 and line length.
- * @param position Length; the position on the line for which to calculate the point on the line
- * @return a directed point
- * @throws OtsGeometryException when position less than 0.0 or more than line length.
- */
- public final OrientedPoint2d getLocation(final Length position) throws OtsGeometryException
- {
- return getLocationSI(position.getSI());
- }
- /**
- * Binary search for a position on the line.
- * @param pos double; the position to look for.
- * @return the index below the position; the position is between points[index] and points[index+1]
- * @throws OtsGeometryException when index could not be found
- */
- private int find(final double pos) throws OtsGeometryException
- {
- if (pos == 0)
- {
- return 0;
- }
- int lo = 0;
- int hi = this.lengthIndexedLine.length - 1;
- while (lo <= hi)
- {
- if (hi == lo)
- {
- return lo;
- }
- int mid = lo + (hi - lo) / 2;
- if (pos < this.lengthIndexedLine[mid])
- {
- hi = mid - 1;
- }
- else if (pos > this.lengthIndexedLine[mid + 1])
- {
- lo = mid + 1;
- }
- else
- {
- return mid;
- }
- }
- throw new OtsGeometryException(
- "Could not find position " + pos + " on line with length indexes: " + Arrays.toString(this.lengthIndexedLine));
- }
- /**
- * Get the location at a position on the line, with its direction. Position should be between 0.0 and line length.
- * @param positionSI double; the position on the line for which to calculate the point on the line
- * @return a directed point
- * @throws OtsGeometryException when position less than 0.0 or more than line length.
- */
- public final OrientedPoint2d getLocationSI(final double positionSI) throws OtsGeometryException
- {
- Ray2d ray = Try.assign(() -> this.line2d.getLocation(positionSI), OtsGeometryException.class, "Position not on line.");
- return new OrientedPoint2d(ray.x, ray.y, ray.phi);
- }
- /**
- * Truncate a line at the given length (less than the length of the line, and larger than zero) and return a new line.
- * @param lengthSI double; the location where to truncate the line
- * @return a new OtsLine2d truncated at the exact position where line.getLength() == lengthSI
- * @throws OtsGeometryException when position less than 0.0 or more than line length.
- */
- public final OtsLine2d truncate(final double lengthSI) throws OtsGeometryException
- {
- return new OtsLine2d(this.line2d.truncate(lengthSI));
- }
- /**
- * Returns the fractional position along this line of the orthogonal projection of point (x, y) on this line. If the point
- * is not orthogonal to the closest line segment, the nearest point is selected.
- * @param x double; x-coordinate of point to project
- * @param y double; y-coordinate of point to project
- * @return fractional position along this line of the orthogonal projection on this line of a point
- */
- public final double projectOrthogonal(final double x, final double y)
- {
- Point2d closest = this.line2d.closestPointOnPolyLine(new Point2d(x, y));
- return this.line2d.projectOrthogonalFractionalExtended(closest);
- }
- /**
- * Returns the fractional projection of a point to a line. The projection works by taking slices in space per line segment
- * as shown below. A point is always projected to the nearest segment, but not necessarily to the closest point on that
- * segment. The slices in space are analogous to a Voronoi diagram, but for the line segments instead of points. If
- * fractional projection fails, the orthogonal projection is returned.<br>
- * <br>
- * The point 'A' is projected to point 'B' on the 3rd segment of line 'C-D'. The line from 'A' to 'B' extends towards point
- * 'E', which is the intersection of lines 'E-F' and 'E-G'. Line 'E-F' cuts the first bend of the 3rd segment (at point 'H')
- * in half, while the line 'E-G' cuts the second bend of the 3rd segment (at point 'I') in half.
- *
- * <pre>
- * ____________________________ G .
- * . | | . .
- * . | . . . . helper lines | . .
- * . | _.._.._ projection line | I. .
- * . |____________________________| _.'._ . L
- * F. _.' . '-. .
- * .. B _.' . '-.
- * . . _.\ . . D
- * . . _.' : . .
- * J . . _.' \ . .
- * .. . _.' : . M
- * . . ..-' \ .
- * . . /H. A .
- * . . / . .
- * C _________/ . .
- * . . . .
- * K . . . .
- * . . . .
- * . . . . N
- * . . . .
- * . . . .
- * . . . .
- * . . . .
- * . .E
- * . .
- * . .
- * . .
- * </pre>
- *
- * Fractional projection may fail in three cases.
- * <ol>
- * <li>Numerical difficulties at slight bend, orthogonal projection returns the correct point.</li>
- * <li>Fractional projection is possible only to segments that aren't the nearest segment(s).</li>
- * <li>Fractional projection is possible for no segment.</li>
- * </ol>
- * In the latter two cases the projection is undefined and a orthogonal projection is returned if
- * {@code orthoFallback = true}, or {@code NaN} if {@code orthoFallback = false}.
- * @param start Direction; direction in first point
- * @param end Direction; direction in last point
- * @param x double; x-coordinate of point to project
- * @param y double; y-coordinate of point to project
- * @param fallback FractionalFallback; fallback method for when fractional projection fails
- * @return fractional position along this line of the fractional projection on that line of a point
- */
- public final synchronized double projectFractional(final Direction start, final Direction end, final double x,
- final double y, final FractionalFallback fallback)
- {
- // prepare
- double minDistance = Double.POSITIVE_INFINITY;
- double minSegmentFraction = 0;
- int minSegment = -1;
- Point2d point = new Point2d(x, y);
- // determine helpers (centers and directions)
- determineFractionalHelpers(start, end);
- // get distance of point to each segment
- double[] d = new double[size() - 1];
- double minD = Double.POSITIVE_INFINITY;
- for (int i = 0; i < size() - 1; i++)
- {
- d[i] = Line2D.ptSegDist(this.line2d.get(i).x, this.line2d.get(i).y, this.line2d.get(i + 1).x,
- this.line2d.get(i + 1).y, x, y);
- minD = d[i] < minD ? d[i] : minD;
- }
- // loop over segments for projection
- double distance;
- for (int i = 0; i < size() - 1; i++)
- {
- // skip if not the closest segment, note that often two segments are equally close in their shared end point
- if (d[i] > minD + FRAC_PROJ_PRECISION)
- {
- continue;
- }
- Point2d center = this.fractionalHelperCenters[i];
- Point2d p;
- if (center != null)
- {
- // get intersection of line "center - (x, y)" and the segment
- p = intersectionOfLines(center, point, this.line2d.get(i), this.line2d.get(i + 1));
- if (p == null || (x < center.x + FRAC_PROJ_PRECISION && center.x + FRAC_PROJ_PRECISION < p.x)
- || (x > center.x - FRAC_PROJ_PRECISION && center.x - FRAC_PROJ_PRECISION > p.x)
- || (y < center.y + FRAC_PROJ_PRECISION && center.y + FRAC_PROJ_PRECISION < p.y)
- || (y > center.y - FRAC_PROJ_PRECISION && center.y - FRAC_PROJ_PRECISION > p.y))
- {
- // projected point may not be 'beyond' segment center (i.e. center may not be between (x, y) and (p.x, p.y)
- continue;
- }
- }
- else
- {
- // parallel helper lines, project along direction
- Point2d offsetPoint =
- new Point2d(x + this.fractionalHelperDirections[i].x, y + this.fractionalHelperDirections[i].y);
- p = intersectionOfLines(point, offsetPoint, this.line2d.get(i), this.line2d.get(i + 1));
- }
- double segLength = this.line2d.get(i).distance(this.line2d.get(i + 1)) + FRAC_PROJ_PRECISION;
- if (p == null || this.line2d.get(i).distance(p) > segLength || this.line2d.get(i + 1).distance(p) > segLength)
- {
- // intersection must be on the segment
- // in case of p == null, the length of the fractional helper direction falls away due to precision
- continue;
- }
- // distance from (x, y) to intersection on segment
- double dx = x - p.x;
- double dy = y - p.y;
- distance = Math.hypot(dx, dy);
- // distance from start of segment to point on segment
- if (distance < minDistance)
- {
- dx = p.x - this.line2d.get(i).x;
- dy = p.y - this.line2d.get(i).y;
- double dFrac = Math.hypot(dx, dy);
- // fraction to point on segment
- minDistance = distance;
- minSegmentFraction = dFrac / (this.lengthIndexedLine[i + 1] - this.lengthIndexedLine[i]);
- minSegment = i;
- }
- }
- // return
- if (minSegment == -1)
- {
- /*
- * If fractional projection fails (x, y) is either outside of the applicable area for fractional projection, or is
- * inside an area where numerical difficulties arise (i.e. far away outside of very slight bend which is considered
- * parallel).
- */
- // CategoryLogger.info(Cat.CORE, "projectFractional failed to project " + point + " on " + this
- // + "; using fallback approach");
- return fallback.getFraction(this, x, y);
- }
- double segLen = this.lengthIndexedLine[minSegment + 1] - this.lengthIndexedLine[minSegment];
- return (this.lengthIndexedLine[minSegment] + segLen * minSegmentFraction) / this.length.si;
- }
- /**
- * Fallback method for when fractional projection fails as the point is beyond the line or from numerical limitations.
- * <p>
- * Copyright (c) 2013-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved.
- * <br>
- * BSD-style license. See <a href="https://opentrafficsim.org/docs/license.html">OpenTrafficSim License</a>.
- * </p>
- * @author <a href="https://github.com/averbraeck">Alexander Verbraeck</a>
- * @author <a href="https://tudelft.nl/staff/p.knoppers-1">Peter Knoppers</a>
- * @author <a href="https://github.com/wjschakel">Wouter Schakel</a>
- */
- public enum FractionalFallback
- {
- /** Orthogonal projection. */
- ORTHOGONAL
- {
- @Override
- double getFraction(final OtsLine2d line, final double x, final double y)
- {
- return line.projectOrthogonal(x, y);
- }
- },
- /** Distance to nearest end point. */
- ENDPOINT
- {
- @Override
- double getFraction(final OtsLine2d line, final double x, final double y)
- {
- Point2d point = new Point2d(x, y);
- double dStart = point.distance(line.getFirst());
- double dEnd = point.distance(line.getLast());
- if (dStart < dEnd)
- {
- return -dStart / line.length.si;
- }
- else
- {
- return (dEnd + line.length.si) / line.length.si;
- }
- }
- },
- /** NaN value. */
- NaN
- {
- @Override
- double getFraction(final OtsLine2d line, final double x, final double y)
- {
- return Double.NaN;
- }
- };
- /**
- * Returns fraction for when fractional projection fails as the point is beyond the line or from numerical limitations.
- * @param line OtsLine2d; line
- * @param x double; x coordinate of point
- * @param y double; y coordinate of point
- * @return double; fraction for when fractional projection fails
- */
- abstract double getFraction(OtsLine2d line, double x, double y);
- }
- /**
- * Determines all helpers (points and/or directions) for fractional projection and stores fixed information in properties
- * while returning the first and last center points (.
- * @param start Direction; direction in first point
- * @param end Direction; direction in last point
- */
- private synchronized void determineFractionalHelpers(final Direction start, final Direction end)
- {
- final int n = size() - 1;
- // calculate fixed helpers if not done yet
- if (this.fractionalHelperCenters == null)
- {
- this.fractionalHelperCenters = new Point2d[n];
- this.fractionalHelperDirections = new Point2D.Double[n];
- if (size() > 2)
- {
- // intersection of parallel lines of first and second segment
- PolyLine2d prevOfsSeg = unitOffsetSegment(0);
- PolyLine2d nextOfsSeg = unitOffsetSegment(1);
- Point2d parStartPoint;
- parStartPoint = intersectionOfLines(prevOfsSeg.get(0), prevOfsSeg.get(1), nextOfsSeg.get(0), nextOfsSeg.get(1));
- if (parStartPoint == null || prevOfsSeg.get(1).distance(nextOfsSeg.get(0)) < Math
- .min(prevOfsSeg.get(1).distance(parStartPoint), nextOfsSeg.get(0).distance(parStartPoint)))
- {
- parStartPoint = new Point2d((prevOfsSeg.get(1).x + nextOfsSeg.get(0).x) / 2,
- (prevOfsSeg.get(1).y + nextOfsSeg.get(0).y) / 2);
- }
- // remember the intersection of the first two unit offset segments
- this.firstOffsetIntersection = parStartPoint;
- // loop segments
- for (int i = 1; i < size() - 2; i++)
- {
- prevOfsSeg = nextOfsSeg;
- nextOfsSeg = unitOffsetSegment(i + 1);
- Point2d parEndPoint;
- parEndPoint =
- intersectionOfLines(prevOfsSeg.get(0), prevOfsSeg.get(1), nextOfsSeg.get(0), nextOfsSeg.get(1));
- if (parEndPoint == null || prevOfsSeg.get(1).distance(nextOfsSeg.get(0)) < Math
- .min(prevOfsSeg.get(1).distance(parEndPoint), nextOfsSeg.get(0).distance(parEndPoint)))
- {
- parEndPoint = new Point2d((prevOfsSeg.get(1).x + nextOfsSeg.get(0).x) / 2,
- (prevOfsSeg.get(1).y + nextOfsSeg.get(0).y) / 2);
- }
- // center = intersections of helper lines
- this.fractionalHelperCenters[i] =
- intersectionOfLines(this.line2d.get(i), parStartPoint, this.line2d.get(i + 1), parEndPoint);
- if (this.fractionalHelperCenters[i] == null)
- {
- // parallel helper lines, parallel segments or /\/ cause parallel helper lines, use direction
- this.fractionalHelperDirections[i] = new Point2D.Double(parStartPoint.x - this.line2d.get(i).x,
- parStartPoint.y - this.line2d.get(i).y);
- }
- parStartPoint = parEndPoint;
- }
- // remember the intersection of the last two unit offset segments
- this.lastOffsetIntersection = parStartPoint;
- }
- }
- // use directions at start and end to get unit offset points to the left at a distance of 1
- double ang = (start == null
- ? Math.atan2(this.line2d.get(1).y - this.line2d.get(0).y, this.line2d.get(1).x - this.line2d.get(0).x)
- : start.getInUnit(DirectionUnit.DEFAULT)) + Math.PI / 2; // start.si + Math.PI / 2;
- Point2d p1 = new Point2d(this.line2d.get(0).x + Math.cos(ang), this.line2d.get(0).y + Math.sin(ang));
- ang = (end == null
- ? Math.atan2(this.line2d.get(n).y - this.line2d.get(n - 1).y, this.line2d.get(n).x - this.line2d.get(n - 1).x)
- : end.getInUnit(DirectionUnit.DEFAULT)) + Math.PI / 2; // end.si + Math.PI / 2;
- Point2d p2 = new Point2d(this.line2d.get(n).x + Math.cos(ang), this.line2d.get(n).y + Math.sin(ang));
- // calculate first and last center (i.e. intersection of unit offset segments), which depend on inputs 'start' and 'end'
- if (size() > 2)
- {
- this.fractionalHelperCenters[0] =
- intersectionOfLines(this.line2d.get(0), p1, this.line2d.get(1), this.firstOffsetIntersection);
- this.fractionalHelperCenters[n - 1] =
- intersectionOfLines(this.line2d.get(n - 1), this.lastOffsetIntersection, this.line2d.get(n), p2);
- if (this.fractionalHelperCenters[n - 1] == null)
- {
- // parallel helper lines, use direction for projection
- this.fractionalHelperDirections[n - 1] =
- new Point2D.Double(p2.x - this.line2d.get(n).x, p2.y - this.line2d.get(n).y);
- }
- }
- else
- {
- // only a single segment
- this.fractionalHelperCenters[0] = intersectionOfLines(this.line2d.get(0), p1, this.line2d.get(1), p2);
- }
- if (this.fractionalHelperCenters[0] == null)
- {
- // parallel helper lines, use direction for projection
- this.fractionalHelperDirections[0] = new Point2D.Double(p1.x - this.line2d.get(0).x, p1.y - this.line2d.get(0).y);
- }
- }
- /**
- * This method is used, rather than {@code Point2d.intersectionOfLines()} because this method will return {@code null} if
- * the determinant < 0.0000001, rather than determinant &eq; 0.0. The benefit of this is that intersections are not so
- * far away, that any calculations with them cause underflow or overflow issues.
- * @param line1P1 Point2d; point 1 of line 1.
- * @param line1P2 Point2d; point 2 of line 1.
- * @param line2P1 Point2d; point 1 of line 2.
- * @param line2P2 Point2d; point 2 of line 2.
- * @return Point2d; intersection of lines, or {@code null} for (nearly) parallel lines.
- */
- private Point2d intersectionOfLines(final Point2d line1P1, final Point2d line1P2, final Point2d line2P1,
- final Point2d line2P2)
- {
- double l1p1x = line1P1.x;
- double l1p1y = line1P1.y;
- double l1p2x = line1P2.x - l1p1x;
- double l1p2y = line1P2.y - l1p1y;
- double l2p1x = line2P1.x - l1p1x;
- double l2p1y = line2P1.y - l1p1y;
- double l2p2x = line2P2.x - l1p1x;
- double l2p2y = line2P2.y - l1p1y;
- double determinant = (0 - l1p2x) * (l2p1y - l2p2y) - (0 - l1p2y) * (l2p1x - l2p2x);
- if (Math.abs(determinant) < 0.0000001)
- {
- return null;
- }
- return new Point2d(l1p1x + (l1p2x * (l2p1x * l2p2y - l2p1y * l2p2x)) / determinant,
- l1p1y + (l1p2y * (l2p1x * l2p2y - l2p1y * l2p2x)) / determinant);
- }
- /**
- * Helper method for fractional projection which returns an offset line to the left of a segment at a distance of 1.
- * @param segment int; segment number
- * @return parallel line to the left of a segment at a distance of 1
- */
- private synchronized PolyLine2d unitOffsetSegment(final int segment)
- {
- return new PolyLine2d(this.line2d.get(segment), this.line2d.get(segment + 1)).offsetLine(1.0);
- }
- /**
- * Returns the projected directional radius of the line at a given fraction. Negative values reflect right-hand curvature in
- * the design-line direction. The radius is taken as the minimum of the radii at the vertices before and after the given
- * fraction. The radius at a vertex is calculated as the radius of a circle that is equidistant from both edges connected to
- * the vertex. The circle center is on a line perpendicular to the shortest edge, crossing through the middle of the
- * shortest edge. This method ignores Z components.
- * @param fraction double; fraction along the line, between 0.0 and 1.0 (both inclusive)
- * @return Length; radius; the local radius; or si field set to Double.NaN if line is totally straight
- * @throws OtsGeometryException fraction out of bounds
- */
- // TODO: move to djutils?
- public synchronized Length getProjectedRadius(final double fraction) throws OtsGeometryException
- {
- Throw.when(fraction < 0.0 || fraction > 1.0, OtsGeometryException.class, "Fraction %f is out of bounds [0.0 ... 1.0]",
- fraction);
- if (this.vertexRadii == null)
- {
- this.vertexRadii = new Length[size() - 1];
- }
- int index = find(fraction * getLength().si);
- if (index > 0 && this.vertexRadii[index] == null)
- {
- this.vertexRadii[index] = getProjectedVertexRadius(index);
- }
- if (index < size() - 2 && this.vertexRadii[index + 1] == null)
- {
- this.vertexRadii[index + 1] = getProjectedVertexRadius(index + 1);
- }
- if (index == 0)
- {
- if (this.vertexRadii.length < 2)
- {
- return Length.instantiateSI(Double.NaN);
- }
- return this.vertexRadii[1];
- }
- if (index == size() - 2)
- {
- return this.vertexRadii[size() - 2];
- }
- return Math.abs(this.vertexRadii[index].si) < Math.abs(this.vertexRadii[index + 1].si) ? this.vertexRadii[index]
- : this.vertexRadii[index + 1];
- }
- /**
- * Calculates the directional radius at a vertex. Negative values reflect right-hand curvature in the design-line direction.
- * The radius at a vertex is calculated as the radius of a circle that is equidistant from both edges connected to the
- * vertex. The circle center is on a line perpendicular to the shortest edge, crossing through the middle of the shortest
- * edge. This function ignores Z components.
- * @param index int; index of the vertex in range [1 ... size() - 2]
- * @return Length; radius at the vertex
- * @throws OtsGeometryException if the index is out of bounds
- */
- // TODO: move to djutils? Note, uses fractionalHelperCenters
- public synchronized Length getProjectedVertexRadius(final int index) throws OtsGeometryException
- {
- Throw.when(index < 1 || index > size() - 2, OtsGeometryException.class, "Index %d is out of bounds [1 ... size() - 2].",
- index);
- determineFractionalHelpers(null, null);
- double length1 = this.lengthIndexedLine[index] - this.lengthIndexedLine[index - 1];
- double length2 = this.lengthIndexedLine[index + 1] - this.lengthIndexedLine[index];
- int shortIndex = length1 < length2 ? index : index + 1;
- // center of shortest edge
- Point2d p1 = new Point2d(.5 * (this.line2d.get(shortIndex - 1).x + this.line2d.get(shortIndex).x),
- .5 * (this.line2d.get(shortIndex - 1).y + this.line2d.get(shortIndex).y));
- // perpendicular to shortest edge, line crossing p1
- Point2d p2 = new Point2d(p1.x + (this.line2d.get(shortIndex).y - this.line2d.get(shortIndex - 1).y),
- p1.y - (this.line2d.get(shortIndex).x - this.line2d.get(shortIndex - 1).x));
- // vertex
- Point2d p3 = this.line2d.get(index);
- // point on line that splits angle between edges at vertex 50-50
- Point2d p4 = this.fractionalHelperCenters[index];
- if (p4 == null)
- {
- // parallel helper lines
- p4 = new Point2d(p3.x + this.fractionalHelperDirections[index].x, p3.y + this.fractionalHelperDirections[index].y);
- }
- Point2d intersection = intersectionOfLines(p1, p2, p3, p4);
- if (null == intersection)
- {
- return Length.instantiateSI(Double.NaN);
- }
- // determine left or right
- double refLength = length1 < length2 ? length1 : length2;
- double radius = intersection.distance(p1);
- double i2p2 = intersection.distance(p2);
- if (radius < i2p2 && i2p2 > refLength)
- {
- // left as p1 is closer than p2 (which was placed to the right) and not on the perpendicular line
- return Length.instantiateSI(radius);
- }
- // right as not left
- return Length.instantiateSI(-radius);
- }
- /**
- * Returns the length fraction at the vertex.
- * @param index int; index of vertex [0 ... size() - 1]
- * @return double; length fraction at the vertex
- * @throws OtsGeometryException if the index is out of bounds
- */
- public double getVertexFraction(final int index) throws OtsGeometryException
- {
- Throw.when(index < 0 || index > size() - 1, OtsGeometryException.class, "Index %d is out of bounds [0 %d].", index,
- size() - 1);
- return this.lengthIndexedLine[index] / this.length.si;
- }
- /**
- * Retrieve the centroid of this OtsLine2d.
- * @return OtsPoint3d; the centroid of this OtsLine2d
- */
- public final Point2d getCentroid()
- {
- if (this.centroid == null)
- {
- this.centroid = this.line2d.getBounds().midPoint();
- }
- return this.centroid;
- }
- /**
- * Get the bounding rectangle of this OtsLine2d.
- * @return Rectangle2D; the bounding rectangle of this OtsLine2d
- */
- public final Bounds2d getEnvelope()
- {
- return this.line2d.getBounds();
- }
- /** {@inheritDoc} */
- @Override
- @SuppressWarnings("checkstyle:designforextension")
- public Point2d getLocation()
- {
- return getCentroid();
- }
- /** {@inheritDoc} */
- @Override
- @SuppressWarnings("checkstyle:designforextension")
- public Bounds2d getBounds()
- {
- if (this.bounds == null)
- {
- Bounds2d envelope = getEnvelope();
- this.bounds = new Bounds2d(envelope.getDeltaX(), envelope.getDeltaY());
- }
- return this.bounds;
- }
- /** {@inheritDoc} */
- @Override
- @SuppressWarnings("checkstyle:designforextension")
- public String toString()
- {
- return this.line2d.toString();
- }
- /** {@inheritDoc} */
- @Override
- @SuppressWarnings("checkstyle:designforextension")
- public int hashCode()
- {
- return this.line2d.hashCode();
- }
- /** {@inheritDoc} */
- @Override
- @SuppressWarnings({"checkstyle:designforextension", "checkstyle:needbraces"})
- public boolean equals(final Object obj)
- {
- if (!(obj instanceof OtsLine2d))
- {
- return false;
- }
- return this.line2d.equals(((OtsLine2d) obj).line2d);
- }
- /**
- * Convert the 2D projection of this OtsLine2d to something that MS-Excel can plot.
- * @return excel XY plottable output
- */
- public final String toExcel()
- {
- return this.line2d.toExcel();
- }
- /**
- * Convert the 2D projection of this OtsLine2d to Peter's plot format.
- * @return Peter's format plot output
- */
- public final String toPlot()
- {
- return this.line2d.toPlot();
- }
- }