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Abstract. It is remarkable that drivers (on average) can safely navigate through 
dense traffic at high speeds—conditions in which the time headways between 
vehicles are in the same order of magnitude as human reaction times. One ex-
planation for this is the ability of drivers to anticipate on the traffic conditions in 
their surroundings. In this paper, we study, through simulation, the effects of re-
action times, errors in perception and anticipation on the probability of acci-
dents on freeways. To this end we extend an existing model for car following 
and lane changing with a perception and anticipation model inspired by 
Ensley’s three levels of situational awareness (perception, understanding and 
projection). By systematically varying driving behavior with different reaction 
times over a range of perception errors, and anticipation strategies, we compute 
efficiency effects (capacity and total time spent) and safety effects (the proba-
bility density of accidents happening as a function of these different contrib-
uting factors and errors). The results provide some evidence that safe driving is 
robust with respect to perception errors under simple anticipation strategies and 
small reaction times. When reaction times grow larger, more advanced anticipa-
tion strategies are needed to guarantee safe driving.  
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1 Introduction 

On a yearly basis 1.5 Million people get killed and several tens of millions get se-
verely injured in traffic incidents worldwide [1]. Even in countries with the highest 
road design and regulation standards, such as The Netherlands (570 deaths and 19,000 
injured in 2015 [2]), the total economic loss due to traffic unsafety is estimated at € 
12.5 billion, or 2.2% of the Gross Domestic Product (GDP), which is more than four 
times the total delay costs of congestion [3].  

In this paper, we focus on the effects of perception errors and anticipation strate-
gies on traffic unsafety. With human reaction times in the same order of magnitude as 
time headways at capacity flows (between 0.5 and 2 seconds), it is remarkable that 



drivers can safely maintain high speeds through dense traffic at all. Even more so 
when considering the many perception errors humans typically make, e.g. in assessing 
relative distances and velocities of vehicles close by. One explanation for this phe-
nomenon is the ability of drivers to anticipate on the traffic conditions further down-
stream and to predict the movement of vehicles in their direct surroundings in the 
short-term future. This mechanism is well known in control theory and engineering: 
prediction has a stabilizing effect on control systems with delayed input. However, the 
intricate balance between reaction time and anticipation is fragile as the sobering stat-
ics at the start of this paper confirm. Moreover, whereas perception can be enhanced 
through technology and perception errors can be automated largely “out of the equa-
tion”, automation of anticipation and prediction is a much harder problem solve, be-
cause it requires the sort of reasoning and intuition that comes natural to humans but 
is very difficult to capture in mathematical models.  

In this paper, we study, through simulation, the effects of reaction times, errors in 
perception and anticipation strategies on the probability of accidents on free-ways. To 
this end we extend an existing “collision-free” model for car following and lane 
changing (the LMRS model) with a perception and anticipation model inspired by 
Ensley’s three levels of situational awareness (perception, understanding and projec-
tion). By systematically varying driving behavior with different reaction times over a 
range of perception errors, anticipation strategies and errors therein, we compute ca-
pacity and several safety indicators as a function of these different contributing factors 
and errors (other contributors such as risk-taking or failing technology beyond the 
scope of this paper).  

2 Overall simulation logic 

 

 
Fig. 1: Schematic delineation of the driving process as modeled in OpenTrafficSim. 
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Fig. 1 delineates the driving process as modeled in our open-source traffic simula-
tor OpenTrafficSim (OTS) [4]. The overall simulation logic in OTS is that a driver—
traveling with a certain strategical plan (a route) on a road stretch—subjectively per-
ceives a portion of the surrounding traffic state. This perception process—potentially 
affected by the drivers’ mental state, preferences, etc—results in a reconstruction of 
the relevant (instantaneous) state variables and an extrapolation of these into the near 
future. Using this (anticipated and possibly erroneous) personal state estimate the 
driver now plans a short-term path (i.e. a trajectory for the next 10-30 seconds) and 
executes it in terms of car following or overtaking. Note that OTS does not constrain 
or impose any specific mathematical model for any of these components. 

We will not use the full conceptual OTS model in this paper. First, we will impose 
errors on perception without an explicit (dynamic) causal model that relates for exam-
ple workload or other explanatory mental constructs to these errors. Furthermore, we 
do not consider strategic planning or learning; we do not consider path-planning and 
execution as separate processes nor do we use a separate vehicle model. 

 

3 Mathematical model for driving behavior 

Research into traffic flow theory dates back to the 1930s [5, 6] and matured in the 
1950s [7, 8] when the first mathematical models for longitudinal driving were devel-
oped. Since then many schools of thought have emerged, each characterized by dif-
ferent behavioral assumptions and different ranges of descriptive and (partial) explan-
atory power for the resulting phenomena. For example, safe-distance models [9-11] 
assume that drivers maintain a large enough distance headway in case the leader 
brakes at maximum deceleration; optimal velocity models [12] assume that drivers 
accelerate to their optimal velocity as a function of the distance headway; whereas 
approaches in the more general group of stimulus-response models [13-15] make 
assumptions on how drivers adapt their speed on the basis of speed and headway and 
a range of additional factors. Incorporating perception and anticipation processes in 
traffic flow modelling is not new. Most models can straightforwardly be augmented to 
include reaction times; so-called psycho-spacing (or action point) models [16] incor-
porate drivers’ inertia to observe and respond to small changes in stimuli; whereas 
multi-anticipatory models [17-19] include terms for anticipation of drivers to traffic 
conditions further downstream. A recent overview of models for longitudinal driving 
behavior can be found in [20]. A similar diversity of modelling approaches can be 
found for lateral driving behavior that governs when drivers change lanes, diverge, 
and merge [21-25]. What these models have in common is that they are—in princi-
ple—collision-free. This is no longer the case, however, if we allow for reaction times 
(i.e. delayed stimuli) and/or errors in these stimuli or both.  

3.1 Lane change model 

The model we employ is an Integrated Lane change Model with Relaxation and 
Synchronization (LMRS) [26]. This model offers a parsimonious and integrated ap-
proach to lane changing and reproduces several important freeway phenomena such 



as speed relaxation and synchronization, i.e. following vehicles in adjacent lanes. 
Although all these effects are captured, the lane change model has only 7 parameters. 
Below, we highlight the main rationale and refer to [26] for details. Most importantly, 
LMRS combines multiple lane change incentives into a lane change desire. The desire 
to change from lane i to lane j that arises from the different incentives is combined 
into a single desire dij, expressed as:   
 𝑑𝑖𝑗 = 𝑑𝑟

𝑖𝑗 + θ𝑣
𝑖𝑗 𝑑𝑠

𝑖𝑗 + 𝑑𝑏
𝑖𝑗  (1) 

In Eq. (1), there is a desire to follow a route (dr), to gain speed (ds) and to keep right 
(db), where the subscript b stands for bias to a particular side (left or right). The latter 
two are included with θv which is the level at which voluntary (discretionary) incen-
tives are included. Meaningful desires range between -1 and 1, where negative values 
indicate that a lane change is not desired (i.e. to stay or to change in the other direc-
tion). Values outside of the meaningful range may exist as incentives are added. The 
weight factor 𝜃,
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The weight factor implies that if both voluntary and mandatory lane-change desires 
are either negative or positive (dr∙ 𝑑𝑣	≥ 0), voluntary desire is fully included as it co-
incides with mandatory desire. However, if voluntary desire conflicts with mandatory 
desire (dr∙dv < 0), the voluntary desire is only partially included. The total desire de-
termines the type of lane change behavior of drivers from three classes: Free Lane 
Changes (FLC), Synchronized Lane Changes (SLC) and Cooperative Lane Changes 
(CLC), identified by three thresholds of dfree, dsync, dcoop as the model parameter: 
 0 < dfree < dsync < dcoop < 1 (3) 

 

 
Fig. 2 Overview of LMRS. Lane change desire is based on three incentives. Lane change 
behavior, including the accepted headway and deceleration for a lane change, varies de-
pending on the level of lane change desire [26]. 
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Fig. 2 gives an overview of the variation of lane change behavior between process-
es. For little desire, no lane change will be performed. For a somewhat larger desire, 
FLC is performed requiring no preparation whatsoever. In SLC and CLC, a potential 
lane changing driver is willing to synchronize their speed with a vehicle on the target 
lane. This is achieved by following a vehicle in that lane. Concurrently, this will align 
the vehicle with a gap (if there is a gap); this is thus a simple gap-searching model. In 
CLC, the potential follower will additionally start to create a gap by following the 
potential lane changing vehicle.  

3.2 Integration of lane change model and car following model 

LMRS works with any car following model. Here we use a slightly adapted version 
of the Intelligent Driver Model (IDM) by Treiber et al. [14]. The acceleration is calcu-
lated with  
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where s0 is the stopping distance, Δv is the approaching rate to the leader, s is the gap 
(net distance headway) and s* is the dynamic desired gap. The adapted model is re-
ferred to as IDM+ because it results in more realistic values for capacity. Integration 
of lane change and car following model takes place in the gap-acceptance process. In 
LMRS, a gap is accepted or rejected based on the resulting deceleration that follows 
from the car-following model. Gaps that result in deceleration that is too large, are 
rejected as they are unsafe, uncomfortable or impolite. The gap is accepted if both the 
lane changer (c) and the new follower (f) will have an acceleration that is larger than 
some safe deceleration threshold –bc. Note that in Fig. 2, we hint that the acceptable 
headway changes as a function of the lane change desire. For larger lane change de-
sires, larger decelerations and shorter headways are accepted. If the lane change is 
initiated, both vehicle c and f should update their desired time headway T. When vehi-
cles accept smaller headways than their normal ones, they will gradually relax their 
headway towards the normal value exponentially with a relaxation time window τ. 

When the lane change desire is above the synchronization threshold, drivers will 
start to synchronize their speed with the leader on the target lane by applying the car-
following model. Drivers will apply a maximum deceleration of b, which is consid-
ered as a both comfortable and a safe deceleration rate. Finally, if an adjacent leader 
wishes to change lane with a desire above the cooperation threshold, a gap will be 
created. Gap creation is similar to synchronization and we again apply the car-
following model with a limited deceleration b. 

3.3 Modelling perception errors and reaction time 

The original LMRS is a deterministic model without explicit time delay. It does not 
capture the errors and time delay in situation awareness.  



Perception error formulation. Important variables (or stimuli) for driving deci-
sion-making are the (relative) positions, speeds and accelerations of surrounding ve-
hicles in addition to the ego vehicle speed v. We distinguish the error formulation in 
these variables. We assume that the error in the ego vehicle speed v is negligeable due 
to direct feedback from the speedometer. For the errors of position xs and speed vs of 
surrounding vehicles, there is evidence that the error of xs and vs is related to distance 
[27], e.g. the further away the predecessor is, the more difficult to accurately estimate 
xs and vs, and thus the higher the error of s and Δv is. We model the error as a standard 
Wiener process w(t). The errors in position s and speed v and acceleration 𝑣 of a sur-
rounding vehicle are formulated as:  
 𝑥W = 𝑥W + w t r8𝑥Wα (6) 
 𝑣W = 𝑣W + w t r/sW  (7) 
 𝑣W = 𝑣W + w t r/𝑣W (8) 

where α = 1 for leaders, or α = -1 for followers. This creates persistence of over- or 
underestimation. The perceived speed is limited to be non-negative, i.e. 𝑣W ≥ 0. This 
Wiener process w(t) has a probability distribution which is the same as the standard 
normal distribution N(0, 1). However, there is auto-correlation over time. This auto-
correlation is described by a value of τ = 20 s. The numerical update scheme is given 
in equation: 

 𝑤 𝑡 = 𝑒D
∆h
i 𝑤 𝑡 − ∆𝑡 + 𝜂 Y∆k

l
		, 𝑃 = 1
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where P = 1 means the surrounding vehicle was perceived in the previous time 
step, and P = 0 otherwise. Random value η is drawn from the standard normal distri-
bution. Note that, although the acceleration of surrounding vehicles is not directly as 
the input for car following models, it will be used as the anticipation strategies in the 
ensuring of this section. 

Reaction time. Including time delay in the model is straightforward in this formu-
lation. We again assume there is no time delay in perceiving the ego vehicle speed, 
but a fixed time delay 𝑡n for perceiving relative positions, speeds and accelerations of 
surrounding vehicles: 
 𝑥W(𝑡 − 𝑡n) = 𝑥W(𝑡 − 𝑡n) + w t r8𝑥W(𝑡 − 𝑡n)α (10) 
 𝑣W(𝑡 − 𝑡n) = 𝑣W(𝑡 − 𝑡n) + w t r/sW(𝑡 − 𝑡n)  (11) 
 𝑣W(𝑡 − 𝑡n) = 𝑣W(𝑡 − 𝑡n) + w t r/𝑣W(𝑡 − 𝑡n) (12) 
One of the powerful features of the OTS simulation environment is that neither reac-
tion times nor scheduling frequency have to be expressed in multiples of the numeri-
cal time step with which the simulation is executed. Without going into detail, this 
results in reaction times that have a stochastic component. 

3.4 Modeling anticipation strategies 

We assume drivers can have the capability to compensate for reaction time tr by 
means of one of three anticipation strategies.  



• None: the simplest case where no anticipation is performed, behavioural stimu-
li are taken from t – tr; Essentially this comes down to an occlusion of tr se-
conds 

• Constant speed: drivers assume other vehicles move at a constant speed, which 
is perceived at t – tr, to estimate distance and relative speed at time t;  

• Constant acceleration: drivers assume other vehicles move with a constant ac-
celeration, which is perceived at t – tr, to estimate distance and speed at time t.  

4 Experimental setup 

4.1 Road network and scenarios 

The experiment is carried out on a motorway corridor with a two plus two lane 
merge with a lane-drop after the merge (see Fig. 3). This is a very common configura-
tion, that furthermore demands both voluntary and mandatory lane-changes and ex-
tensive vehicle interaction, while maintaining a single flow. This means that there are 
two potential bottlenecks, one at the merge, which heavily depends on vehicle lane 
changing behaviour, and a second one at the lane-drop, which is obviously more se-
vere. The corridor is 9 km in length in total with the other distances of the various 
sections indicated in Fig. 3. 

 

 
Fig. 3: Experimental network 

A basic demand scenario is applied in the experiment that allows the influence of 
perception errors to be evaluated based on the three main traffic states: free-flow, 
(near) capacity flow, and congested flow. The demand distribution in time is shown in 
Fig. 4 and is given against the maximum flow on the two inflowing carriageways. The 
maximum flows on the two carriageways are 3500 veh/hr and 3200 veh/hr for car-
riageway A and B respectively. Furthermore, the distribution of generated vehicles for 
both carriageways over the two lanes is 55% for the left lane and 45% for the right 
lane, while 5% of all traffic are trucks, which 
are always generated on the right lane. The 
headways of inflowing traffic are exponential-
ly distributed. There is a model warm-up time 
of 360 seconds with a demand set at 0.5 of the 
maximum flow.  

For each anticipation strategy there are 36 
scenarios by varying the error and reaction 
time. For the perception error we have rs = 
{0.0, 0.02, 0.04, 0.06, 0.08, 0.1}. For the 
speed error we use r∆v = rs / 5 = {0.0, 0.004, 

Fig. 4: Demand distributions for the 
basic demand scenario 



0.008, 0.012, 0.016, 0.02}. Finally, for the acceleration error we use rv̇ = rs·2 = {0.0, 
0.04, 0.08, 0.12, 0.16, 0.2}. While varying the extent of perception errors in our ex-
periment, we scale all error parameter simultaneously, with base parameter rs where 
r∆v = rs / 5 and rv̇ = rs·2. For the reaction time we use tr = {0.0s, 0.1s, 0.2s, 0.3s, 0.4s, 
0.5s}.  

Due to reaction time stochasticity as mentioned above, these reaction times are 
lower bounds. Reaction times vary amongst drivers and can be 0-0.5s larger.  Addi-
tional to these 36 scenarios, we use 1 ‘average scenario’ with rs = 0.05 and tr = 0.25s 
for more in-depth comparisons. Note that the deterministic model is given by the sce-
nario with rs = tr = 0.  

4.2 Performance indicators 

In the experiment, we aim to evaluate the effect of driver perception through reac-
tion times and perception errors on traffic flow and safety. We consider capacity (max 
flow sustained for five minutes at the most downstream bottleneck); time-to-collision 
(TTC) frequency, extreme deceleration frequency (EDF) and accident frequency rate 
(AFR). The AFR indicator is defined as the total amount of kilometers driven by all 
vehicles in a simulation run before a collision occurs.  

For each scenario 3 replications are performed. For the safety indicators, this is suf-
ficient, since each run gives many thousands of inter-vehicle observations. We are 
aware that for estimating capacity, more runs are needed, which due to technical prob-
lems was not possible before publication. Note that 3 random arrival patterns of vehi-
cles and their characteristics will result in the 3 replications, but these arrival patterns 
are equal for all scenarios for a given replication number. The random numbers used 
for perception do not affect the arrival pattern. This increases comparability of scenar-
ios. 

5 Results 

5.1 Traffic flow performance  

No anticipation Constant speed Constant acceleration 
a) 

 

b) 

 

c) 

 
Fig. 5: Traffic flow performance (capacity) for three anticipation scenarios. Note that 
reaction times are lower bound values; drivers may experience up to 0.5 second additional 
reaction time  

Fig. 5 visualises capacity values for each anticipation strategy. Note, that results 
are only given for scenarios in which no collisions have taken place between vehicles. 



If in all three replications a collision took place, then no result is produced. Otherwise, 
the figures show the mean value of all available simulation runs. Inclusion of anticipa-
tion in driver’s behavior can be seen to lead to an improvement in capacity values as 
well as TTS for increasing reaction times, especially above an initial reaction time 
value of 0.2 seconds. There doesn’t appear to be any substantial difference between 
the two anticipation strategies. Given the limited number of replications these results 
must be taken with reservations. 

5.2 Traffic safety results  

The results of the traffic safety indicators: time-to-collision (TTC) and extreme de-
celeration frequency (EDF) are given in Fig. 7a-b. The accident frequency rate (AFR) 
results are given in Fig. 8a-c.  

The results of the TTC and EDF are shown as probability distributions normalized 
to lane-kilometers and hours. Fig. 7a, shows the constant acceleration strategy per-
forms better than the constant speed strategy, and almost as good as the deterministic 
model. Without anticipation there are more very small TTC values (1 – 2s). However, 
higher but still critical TTC values occur much less frequent. This is not a direct result 
from the lack of anticipation. Rather, this is a result from the very different congestion 
pattern in this scenario as shown in Fig. 6b (only two very dense jam waves emerge in 
this case). With a reduced number of shockwaves, there are simply less fluctuations in 
speed. A similar performance for safety is found when the EDF is reviewed in Fig. 7b. 
The EDF performance for no anticipation strategy performs the worst, as may be ex-
pected. Anticipation reduces the frequency of extreme decelerations. Again constant 
acceleration performs close to the deterministic model, and better than the constant 
speed strategy. 

 
a) Deterministic model 

  

b) No anticipation 

  
c) Anticipation as constant speed 

  

d) Anticipation as constant acceleration 

 
Fig. 6: Congestion patterns for different anticipation scenarios 
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Fig. 7a-b: Traffic safety performance indicators per anticipation strategy; TTC and EDF 

The accident frequency rate (AFR) results show an interesting difference between 
the three anticipation strategies. The accident rate is the highest (i.e. most kms per 
accidents) for the anticipation scenario with a constant speed, with the anticipation 
scenario with constant acceleration anticipation also scoring relatively high compared 
to no anticipation. Reaction time has a clear influence on the accident rates, with 
higher reaction times leading to a greater chance of accidents. Again, the perception 
error does not seem to have any significant influence on the probability of an acci-
dent.  
No anticipation Constant speed Constant acceleration 
a) 
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c) 

 
Fig. 8a-c: Accident frequency rates for three anticipation scenarios. Note that reaction 
times are lower bound values; drivers may experience up to 0.5 second additional reaction 
time. 

6 Discussion and Synthesis 

Given our assumptions about collision-free driving (the LMRS model)—the results 
show that safe driving is fairly robust against the entire range of perception errors we 
tested under simple anticipation strategies and reaction times of up to a second. Antic-
ipation does mostly cancel the effects of reaction time, although more critical situa-
tions and more collision occur. The simplest strategy, constant speed anticipation 
performs slightly worse than constant acceleration anticipation. The latter shows re-
sults that are overall close to a deterministic model, that is driving with no perception 
errors and no reaction time.  

There are, however, some limitations. First, we have used a limited number of rep-
lications—time restrictions prevented us from doing more. This makes inference on 
capacity debatable. Second, humans are not good at estimating accelerations. We have 
incorporated this with a large perception error, but see no significant influence of 
these large errors. One probable reason for this is that the anticipation time considered 



in this paper is relatively short—just the time needed to bridge the reaction time de-
lay. When we consider anticipation over longer time periods we hypothesize that 
more advanced anticipation strategies would pay off.  

Future work will focus on testing the same hypotheses in more demanding scenar-
io’s in which also scanning frequency (attention span) is taken into consideration.  
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