
  

  

Abstract—The effects of Cooperative Adaptive Cruise 
Control (CACC) on traffic flow is an important issue as traffic 
flow stability, capacity and safety are concerned. In contrast to 
most research we focus on traffic flow stability. We use the 
Intelligent Driver Model and CACC algorithms to assess the 
effects. A recently field-tested and CACC-based advisory 
system is also evaluated as an intermediate solution. It is found 
that CACC can quickly damp shockwaves at lower penetration 
rates (50%) and that shockwaves move faster. 

I. INTRODUCTION 

RAFFIC all over the world suffers from congestion. 
Congestion starts as shockwaves in which drivers are 

forced to decelerate. Shockwaves may grow in length and 
even in width (lane synchronization). However, shockwaves 
may also be ‘absorbed’ in traffic. Usually these shockwaves 
are referred to as unstable and stable traffic respectively. A 
more comprehensive description of stability can be found in 
[1], where a distinction between local, platoon and traffic 
flow stability is made. Shockwaves have many drawbacks 
related to fuel consumption, the environment, travel time, 
and traffic safety. As shockwaves have no merits, many 
attempts have been made to reduce or prevent them.  

Advanced Driver Assistance systems aim at helping the 
driver with various tasks related to the driving task such as 
lane keeping and collision avoidance. One of the most 
common Advanced Driver Assistance systems is Adaptive 
Cruise Control. Adaptive Cruise Control tries to maintain a 
certain speed and is able to follow a slower predecessor. 
More advanced Adaptive Cruise Control systems also use 
communication between vehicles. This type of Adaptive 
Cruise Control is called Cooperative Adaptive Cruise 
Control or CACC. It results in more stable traffic than 
Adaptive Cruise Control. We focus on CACC systems that 
communicate with multiple vehicles ahead. This concept is 
relatively new and only little research has been performed on 
this subject. CACC systems are able, similarly to humans, to 
‘look’ further ahead than one vehicle and to anticipate 
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accordingly. CACC systems can perform this task better than 
humans as anticipation can be performed for more vehicles 
and because speed differences, distances and acceleration are 
estimated more precisely. Also the response time of CACC is 
much lower compared to human drivers. Potentially these 
systems reduce all the downsides that come with 
shockwaves, though into different extents. 

An Acceleration Advise Control (AAC) system is an 
advisory system based on a CACC. It uses the CACC to give 
an acceleration advice enabling a driver to anticipate more 
accurately and well in advance of disturbances further ahead. 
An AAC algorithm is evaluated here and compared to the 
results of a recently held large Field Operational Test [2].  

In this article we investigate into what extent a realistic 
CACC algorithm is indeed able to mitigate shockwaves. 
Shockwave characteristics are evaluated for different levels 
of CACC penetration. From these characteristics some 
plausible hypotheses are made on the implications for human 
drivers in mixed traffic and the effectiveness of CACC. 
Generally shockwaves are damped quicker with higher 
penetrations of CACC. 

In section 2 it is described what car-following model for 
human drivers is most suitable for comparison with CACC 
systems. Section 3 describes CACC systems and the existing 
knowledge. Next, section 4 gives results of a large Field 
Operational Test. Sections 5 and 6 describe a modeling 
framework for CACC and present the results. Sections 7 and 
8 finally give some discussion and conclusions. 

II.  MODELING HUMAN DRIVERS 

A. Car-following models 

In microscopic traffic flow models the so-called 
longitudinal driving task is modeled using a combination of 
free flow driving and car-following models. For decades 
attempts have been made to capture human driver behavior 
in a car-following model. A representation of human 
behavior regarding traffic flow stability should have realistic 
shockwave patterns and macroscopic capacity. To this end 
we have looked at several car-following models. 

The Intelligent Driver Model (IDM) is presented in [3]. 
The main feature of the model is the non-linear response to 
speed differences, included in s*, the dynamic desired 
headway. The acceleration is determined in (1). 
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where a is the comfortable acceleration, v is the current 
speed, v0 is the desired speed, s0 is the minimum headway (at 
standstill), T is the desired time headway, ∆v is the speed 
difference with the leader, s is the current distance headway 
and b is the comfortable deceleration. The IDM shows 
realistic shockwave patterns but has a macroscopic capacity 
of just below 1900 veh/h, see figure 1a. In order to reach a 
reasonable capacity, the desired time headway needs to be 
lowered to unreasonable values. 

We have also looked at the Optimal Velocity Model [4]. 
In the Optimal Velocity Model the acceleration is 
determined by adapting the speed to a desired speed with a 
certain relaxation. The desired speed is dependant on the free 
flow desired speed and the headway. The Optimal Velocity 
Model is not always collision free and performs worse than 
the IDM in representing trajectory data [5]. 

Another frequently used car-following model is the model 
by Helly [6], and the many variations to this model. These 
models are straight forward and easy to understand. 
However, the linear responses to deviation from desired 
headway and desired speed do not result in realistic 
shockwave patterns. We have tested the model and found 
that shockwaves grow, that is, the region where speeds are 
lower grows both backwards and slightly forwards while the 
lowered speed remains constant. This is a-typical behavior 
for congestion. 

B. Selected car-following model 

As we are focusing on traffic flow stability we have 
chosen to use an adapted version of the IDM, here referred 
to as IDM+. We have adapted the IDM to achieve 
reasonable capacity values. To this end we apply a 
minimization over the free-flow and the interaction terms of 
(1), similarly to models based on Helly and Gipps [7]. 
 

( ) 24 *

0

,
min 1 ,1

s v vdv v
a

dt v s

  ∆ 
 = ⋅ − −   
     

 (3) 

 
By explicitly separating the free-flow and interaction 

terms, the equilibrium fundamental diagram of the IDM 
changes from a smooth topped-off shape to a triangular 
shape as in figure 1a. For v/v0 < 1 or s*/s < 1 (region A+B+C 
in figure 1b) the acceleration difference is small. The figure 
is normalized with respect to parameter a thus the 
acceleration difference in this region is smaller than a. Note 

that this contains the region of normal operations as drivers 
will have v0 ≥ v (region B+C) on a homogenous stretch of 
road. Drivers also have s > s* (region A+B) in free flow 
conditions and s ≈ s* in congested conditions. Unstable 
behavior in the IDM is largely dependant on s* as this 
includes the exaggerated response to speed difference and 
deviation from the equilibrium headway. Strong 
decelerations triggering traffic flow instability occur with s* 
>> s. This still holds for the IDM+ as long as v ≤ v0 (region 
C instead of D). The maximum acceleration difference is 
then equal to a. 

III.  ADVANCED DRIVER ASSISTANCE SYSTEMS AND 

MODELS 

Much research into the effects of Adaptive Cruise Control 
systems has been performed. For instance in [8] the IDM is 
adapted to a less over reactive version. Next the Adaptive 
Cruise Control settings are made dynamic depending on the 
situation (free traffic, upstream front, congested traffic, 
downstream front, bottleneck). The main impact found was 
an increased capacity.  

Present research has focused mainly on throughput and 
comfort. We however focus mainly on traffic flow stability 
and investigate implications for human drivers in mixed 
traffic. In the Netherlands TNO has developed and tested 
CACC systems that are the basis of our research.  
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Fig. 1.  (a) Equilibrium fundamental diagram of the IDM and IDM+ 
with v0 = 120 km/h, s0 = 2 m, T = 1.45 s and a vehicle length of 5 m. 
For the IDM the equilibrium gap is calculated as in [3], For the IDM+ 
an equilibrium gap of s0 + vT is used. From the equilibrium gap a 
density can be derived using the vehicle length. Multiplying with v 
gives the flow. (b) Difference in acceleration between IDM and 
IDM+ (IDM+ minus IDM) normalized to parameter a. Note that all 
other IDM parameters are captured within the fractions v/v0 and s*/s. 
For regions A, B, and C there is little difference. Region B represents 
normal operations (s ≥ s* & v ≤ v0). 



  

A. IRSA Controller 

In [9] the Integrated full-Range Speed Assistant (or IRSA) 
controller was evaluated. IRSA is a CACC system as 
described in [10]. Positive effects on capacity and comfort 
were found. In [11] MIXIC 1.3 [12] was used to evaluate the 
effects of a dedicated lane for CACC vehicles. Again 
positive effects on capacity were found although the lane 
changing process was made more difficult because of 
platoons with vehicles closely following each other. 

The IRSA controller has multiple versions. We have used 
the CACC2 as this is applicable even when not all vehicles 
are equipped. This allows investigation into the effects at 
multiple penetration rates. An important building block in 
the IRSA controller is a regular Adaptive Cruise Control. 
The Adaptive Cruise Control acceleration of vehicle d is 
defined in (4). 
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Here kcc is a constant gain, vcc is the desired speed, vx is 

the vehicle velocity, ev is the relative speed error 
(downstream vehicle speed minus vx), ex is the relative 
distance error and k1 and k2 are non-linear gains. The 
CACC2 version of the IRSA controller extends this control 
law by including the speed differences with additional 
leaders. Here, only equipped vehicles are included with a 
maximum distance of 200m to the concerned vehicle. A 
maximum of n = 5 leaders is used in (5). As CACC2 also 
operates with mixed traffic a relation to the distance headway 
is excluded. 
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Undefined by the IRSA documentation are ex (or actually 

the desired distance headway), k1 and k2. For this we use the 
form and few parameters from MIXIC. The desired headway 
is given by xd = c1 + c2vx + c3vx

2. Here we use c1 = 3 for the 
minimum headway (as in MIXIC), the desired time headway 
for c2 and the quadratic term is ignored giving c3 = 0. In 
MIXIC the values of 0.3 and 1.5 are used for k1 and k2 
respectively for the direct leader. For the remaining leaders 
k2 equals 0.2. Here values of 0.3 and 1.0 are used for all 
leaders. It turned out that this lead to an algorithm that is not 
collision free. Similarly as in MIXIC it is assumed that 
drivers will decelerate and override the system if necessary. 
A minimization over acceleration from the IRSA controller 
(5) and the IDM+ car-following model (1) gives the final 
IRSA acceleration. 

B. Acceleration Advice Controller 

An Acceleration Advice Controller (or AAC) is an 
advisory system based on a CACC system. The CACC 
generates an acceleration advice to the driver [2] instead of 

controlling throttle and brakes directly. The CACC controller 
is based on [13] and adjusted to deal with large time delays 
due to the driver responding to the HMI. In [2] the 
feedforward is based on the acceleration of five 
predecessors. The amplification of accelerations upstream in 
the platoon is limited. For larger time delays, i.e. ≥ 0.4 s, the 
controller that is based on five predecessors is more string 
stable compared to [13]. The AAC was designed for 100% 
penetration rate and is not suitable for mixed traffic. 

IV.  A270 FIELD TEST 

The AAC system has recently been tested in a large Field 
Operational Test [2] on the A270 public highway, with the 
objective to demonstrate the potential of CACC systems to 
improve traffic efficiency and shockwave behavior in 
particular. A string of 50 AAC equipped vehicles was put 
through a series of experiments in which shockwaves were 
induced with varying speeds and decelerations. Various 
decelerations were performed up to -5 m/s2. The largest 
deceleration will also be simulated in this paper. A control 
group of 50 unequipped vehicles was put through the same 
experiments in the adjacent lane. The time headway of the 
AAC system was set at the average of the unequipped 
vehicles at 1.2 s. The first results in [2] can be compared to 
the simulation results here.  

Figure 2 shows the shockwave patterns of one of the 
experiments from [2]. The first wave initiated around 500 m 
is similar to the simulation scenario defined below. The 
unequipped vehicles on the left experience a shockwave 
(dark zone) travelling with a speed of about -20 km/h 
(upstream). A second wave emerges almost immediately 
after the first travelling about +7 km/h (downstream). Both 
waves do not tend to damp out within the string of 50 
vehicles. 

The equipped vehicles (right) tend to damp out both 
shockwaves. It can also be observed that the first shockwave 
develops as a stationary wavefront. 

 
Fig. 2.  Shockwave patterns from an experiment on the A270; 
unequipped vehicles (left), AAC equipped vehicles (right). Gray lines 
are vehicle trajectories (black indicates locations where vehicles 
decelerate with more than 1.0 m/s2). 



  

The conclusion from the A270 demo is that an AAC 
system helps drivers to better anticipate and control their 
decelerations and accelerations. This reduces the speed and 
headway variations (figure 3), and consequently stabilizes 
shockwaves better. Improvements of variations in traffic 
density of up to 13% were demonstrated.  

V. SIMULATION FRAMEWORK 

Human drivers and CACC equipped vehicles are 
simulated on a 4 km stretch of road with a single lane. The 
first vehicle is pre-programmed and drives at 90 km/h for the 
first 80 seconds covering the first 2 km. Then the vehicle 
decelerates at a rate of -5 m/s2 (as in the A270 field test) to a 
speed of 36 km/h. This speed is maintained for 5 seconds 
after which the vehicle accelerates at a rate of 1 m/s2 back to 
90 km/h. As this initial perturbation forms a deceleration to 
36 km/h, there is room left for shockwave growth due to 
unstable behavior. We have also applied a Gaussian 
distribution on the desired time headway both for human 
drivers and CACC2 equipped vehicles. This will introduce 
small headways that may result in unstable behavior but also 
large headways that may result in more stable behavior. By 
varying the headway standard deviation the net effect can be 
assessed. Note that both human drivers and CACC2 
equipped vehicles have the same average desired headway as 
we are concerned with traffic flow stability and not with 
capacity, for which CACC systems can also be used. 

Both the headway distribution and the CACC2 penetration 
have been varied. Two headway distributions have been 
used, 1.2±0.15 seconds and 1.2±0.3 seconds. The average of 
1.2 seconds gives a capacity of 2400 veh/h with a desired 
speed of 90 km/h. The distribution of headways introduces 
slight decelerations at the start of the stretch of road as the 
vehicles are generated at a fixed headway corresponding to 
the inflow. This slightly decreases inflow capacity. The 
inflow is set at 2000 veh/h. Penetration levels of 0%, 50% 
and 100% have been evaluated.  

The AAC algorithm of [2] is simulated in scenarios with a 
fixed headway and 100% penetration rate only, as the AAC 
algorithm is only designed for this. Driver responses to the 
HMI are included as a reaction time with a Gaussian 
distribution with an average of 0.5 s and a variation of 0.1 s. 
Reaction times are rounded to an integer multiple of the time 
step and limited at a minimum of 0.3 s. 

Simulations are stopped as soon as a shockwave reaches 

the start of the simulated stretch of road (collision of 
generated vehicle indicates spillback), after 15 minutes or as 
soon as all vehicles have a speed above 70 km/h after the 
shockwave was started (figure 4c). The applied time step is 
0.1 s. Output of the simulations is in the form of vehicle 
trajectories. From these trajectories it can be derived whether 
the traffic flow reacts stable or unstable to the perturbation. 
Also the extent of shockwaves can be assessed. 

VI.  RESULTS 

In order to analyze the resulting traffic flow stability the 
shockwave dynamics are assessed. A linear function of time 
is derived from the trajectories and gives the location of the 
shockwave. The following steps describe this derivation: 
a. For each vehicle, find the first five successive time 

steps with a deceleration stronger than -1 m/s2. This 
threshold is significantly larger than fluctuations with 
only the gas pedal (up to about -0.5 m/s2), requiring that 
the brake is actually used. Decelerations on the first 100 
meters are ignored as vehicles may adjust to their 
desired headway. The first of five time steps is the 
anchor point (x, t) of the shockwave. 

b. Find the least-squares solution with x = f(t) = x0 + vst 
through the anchor points. The shockwave speed is than 
given by vs and x0 is nothing more than a spatial 
intercept. As the linear shockwave may not start with the 
first vehicle, the first approximation may be a poor one. 
This can be seen in figures 4a and 4b where the final 
linear approximation starts around t = 220. Therefore 
the vehicle with the largest error in location between the 
anchor point and the linear shockwave is excluded and 
this step is repeated. The stopping criterion is defined as 
a maximum allowable distance error dependent on the 
shockwave speed. With larger shockwave speeds, larger 
distance errors are allowed. Each iteration the distance 
errors are divided by the latest shockwave speed vs. This 
results in a ‘travel time’ for which a maximum error of 
8s is the stopping criterion. This value has no 
meaningful value and was visually confirmed to return 
the linear part of the shockwave. 

c. The shockwave duration is deduced from the 
maximum and minimum time of the anchor points of all 
remaining vehicles. The shockwave range is derived 
from the duration and shockwave speed. For the 
shockwave speed the last value of vs is used.  

Table 1 shows the average values of 10 runs for each 
scenario where each scenario received the same set of 
random seeds. Note that for average values it may not hold 
that v = t/x. The increase in headway variability appears to 
have a limited effect on traffic flow stability. From figure 4a 
and 4b it can however be seen that an increase in headway 
variability increases the shockwave frequency. Figures 4a 
and 4b also indicate as expected that the IDM+ shows 
similar shockwave patters as the IDM. An increase in 
CACC2 penetration has large consequences for the 

 
Fig. 3.  Histogram of time headway over all A270 experiments; AAC 
equipped vehicles (continuous), unequipped vehicles (dashed). 

 



  

characteristics of shockwaves. The duration is shortened 
while the range is lengthened. The resulting shockwave 
speed increases rapidly. This high shockwave speed is 
visible in figure 4d. The variability between individual runs 
is larger for 50% CACC2 equipped vehicles than for 0 or 
100% CACC2 equipped vehicles. These circumstances are 
thus less predictable for human drivers.  

Figure 4c shows that the AAC algorithm produces a 
downstream moving shockwave similar to the second 
shockwave observed in the A270 experiments (figure 2). It is 
remarkable that the simulation scenario does not reproduce 
the first upstream wave as with the other algorithms. It 
should be noted here that the simplified reaction model will 

have a significant effect on wave behavior. Other differences 
between simulated and field data may come from the 
variability of headways. For single drivers figure 3 shows 
large variations while the desired headway is simulated as a 
constant. 

VII.  DISCUSSION 

Car-following models to date appear unable to capture 
human driving behavior with realistic traffic flow stability, 
capacity and reaction time. We have used the IDM+ which 
shows realistic traffic flow stability but has no reaction time. 
Given that CACC systems are particularly better than 
humans at estimation and reaction time, a sensitivity analysis 
of used reaction times and estimation errors would have been 
valuable. As a result, our conclusions should be considered 
explorative. In a qualitative sense our modeling results are 
similar to the A270 field experiment. 

The fast shockwaves of the IRSA controller can be 
attributed to a summation of (a part of the) interaction terms. 
As the IRSA controller is sensitive to speed differences only 
for all but the direct leader, the time step (or system response 
time) is hardly of influence. Instantaneous acceleration 
differences need time to result in speed differences. For 
CACC systems that use acceleration differences the time step 
will be of influence to the shockwave speed. The value for k2 
is also of influence as this governs the acceleration response 
and hence acceleration differences. Lower values of k2 and 
fewer vehicles that are anticipated for will result in slower 
shockwaves. Nonetheless these shockwaves will be faster 
than without CACC2 as any CACC system should anticipate 
further ahead than humans (n > nhuman and k2 > 0) to have 
more stability in traffic flow. 

For humans anticipation is an important aspect of driving 
[14]. Given the larger shockwave speeds of CACC, human 
drivers may be less able to anticipate and either show more 
unstable behavior or will increase headways leading to a 
decrease in capacity relative to a theoretical modeled 
capacity. In the simulations in this paper we have assumed 
that drivers still behave as the IDM. Model results of mixed 
traffic are thus unreliable. Capacity and traffic flow stability 
may be overestimated. Whether the net effect is positive may 

 

 
Fig. 4.  Shockwave patterns of several scenarios.  
(a) 0%, headway distribution of 1.2±0.15 s, run 3 
(b) 0%, headway distribution of 1.2±0.3 s, run 3  
(c) 100% AAC, run 3 
(d) 50% CACC2, headway distribution of 1.2±0.15 s, run 3 
Only the linear part of the shockwave is considered. 

 

TABLE I 
SHOCKWAVE CHARACTERISTICS 

  Headway distribution 

  1.2±0.15 s 1.2±0.3 s 

duration range speed duration range speed 
algorithm 

equipped 
vehicles [s] [m] [m/s] [s] [m] [m/s] 

IDM 0% unstable unstable -4,4 unstable unstable -4,4 

AAC 100% 45,1 341,9 7,6 (without distribution) 

CACC2 50% 9,0 -173,6 -18,7 9,0 -171,1 -18,5 

CACC2 100% 7,6 -579,5 -76,6 7,9 -572,2 -73,6 

This table gives averages of 10 stochastic runs. Unstable means that 
the shockwave grows and has a theoretically infinite duration and range. 
This holds for each of the runs where ‘unstable’ is given. 

 

 



  

even be disputed for some levels of CACC2 penetration. 
There may also be serious implications on traffic safety if 
human drivers do not adapt their method of anticipation or 
desired headway. Only for a penetration of 100% will these 
downsides disappear. The results of the AAC algorithm 
however indicate that using the right CACC algorithm, these 
implications for human drivers may be small. 

Another interesting aspect of human drivers is the 
interdependency of reaction time and time headway. At 
merging and diverging sections drivers are faced with short 
headways and may adjust their reaction time (level of 
attention) accordingly. This is opposite to the often used 
notion that drivers will keep a safe distance, depending on 
their reaction time. A dynamic reaction time might be the 
key to having collision-free traffic operations with realistic 
parameter values in car-following models that include a 
finite reaction time, estimation errors and anticipation while 
having a realistic macroscopic capacity. 

VIII.  CONCLUSIONS AND OUTLOOK 

We have introduced the IDM+ car-following model which 
separates the free-flow and interaction term of the IDM. The 
IDM+ is able to produce realistic capacities with reasonable 
parameter values.  

For the IRSA controller we have found that traffic flow 
stability improves as shockwaves are quickly damped. This 
comes at the expense of a larger shockwave range and results 
in very fast shockwave speeds. This may have undesirable 
implications on the behavior of human drivers.  

The AAC algorithm does not have these implications as 
the shockwave moves upstream. However, the AAC 
algorithm is only designed for a penetration rate of 100%. 
Whether the AAC algorithm is useful in mixed traffic has not 
been investigated. It however should be (made) applicable 
for mixed traffic for implementation purposes.  

Perturbations in reality may often come from lane 
changes. In [15] it was even found that all shockwaves at the 
investigated highway were initiated by lane changes. For a 
realistic generation of shockwaves a multi-lane facility needs 
to be modeled. This would also allow for the evaluation of 
cooperative systems that try to prevent shockwaves not only 
by speed and headway advice, but also by means of lane 
advice. 

Finally it is noted that there is a lack of data and 
knowledge on how the longitudinal and lateral driving tasks 
together produce traffic flow instability. In this article we 
have looked at the longitudinal driving task with an initial 
perturbation that may be the result of a cut-in or unstable car-
following behavior. Detailed trajectory data of multiple lanes 
will be required to validate microscopic models of multi-lane 
facilities. 
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