View Javadoc
1   package org.opentrafficsim.core.geometry;
2   
3   import java.awt.geom.Line2D;
4   import java.util.ArrayList;
5   import java.util.List;
6   
7   import org.opentrafficsim.core.network.NetworkException;
8   
9   import com.vividsolutions.jts.geom.Coordinate;
10  import com.vividsolutions.jts.geom.Geometry;
11  import com.vividsolutions.jts.linearref.LengthIndexedLine;
12  import com.vividsolutions.jts.operation.buffer.BufferParameters;
13  
14  /**
15   * <p>
16   * Copyright (c) 2013-2017 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
17   * BSD-style license. See <a href="http://opentrafficsim.org/docs/license.html">OpenTrafficSim License</a>.
18   * <p>
19   * $LastChangedDate: 2015-07-16 10:20:53 +0200 (Thu, 16 Jul 2015) $, @version $Revision: 1124 $, by $Author: pknoppers $,
20   * initial version Jul 22, 2015 <br>
21   * @author <a href="http://www.tbm.tudelft.nl/averbraeck">Alexander Verbraeck</a>
22   * @author <a href="http://www.tudelft.nl/pknoppers">Peter Knoppers</a>
23   */
24  public final class OTSBufferingJTS
25  {
26      /** Precision of buffer operations. */
27      private static final int QUADRANTSEGMENTS = 16;
28  
29      /**
30       * 
31       */
32      private OTSBufferingJTS()
33      {
34          // cannot be instantiated.
35      }
36  
37      /**
38       * normalize an angle between 0 and 2 * PI.
39       * @param angle original angle.
40       * @return angle between 0 and 2 * PI.
41       */
42      private static double norm(final double angle)
43      {
44          double normalized = angle % (2 * Math.PI);
45          if (normalized < 0.0)
46          {
47              normalized += 2 * Math.PI;
48          }
49          return normalized;
50      }
51  
52      /**
53       * @param c1 first coordinate
54       * @param c2 second coordinate
55       * @return the normalized angle of the line between c1 and c2
56       */
57      private static double angle(final Coordinate c1, final Coordinate c2)
58      {
59          return norm(Math.atan2(c2.y - c1.y, c2.x - c1.x));
60      }
61  
62      /**
63       * Compute the distance of a line segment to a point. If the the projected points lies outside the line segment, the nearest
64       * end point of the line segment is returned. Otherwise the point return lies between the end points of the line segment.
65       * <br>
66       * Adapted from <a href="http://paulbourke.net/geometry/pointlineplane/DistancePoint.java"> example code provided by Paul
67       * Bourke</a>.
68       * @param lineP1 OTSPoint3D; start of line segment
69       * @param lineP2 OTSPoint3D; end of line segment
70       * @param point Point to project onto the line segment
71       * @return double; the distance of the projected point or one of the end points of the line segment to the point
72       */
73      public static double distanceLineSegmentToPoint(final OTSPoint3D lineP1, final OTSPoint3D lineP2, final OTSPoint3D point)
74      {
75          return closestPointOnSegmentToPoint(lineP1, lineP2, point).distanceSI(point);
76      }
77  
78      /**
79       * Project a point on a line (2D). If the the projected points lies outside the line segment, the nearest end point of the
80       * line segment is returned. Otherwise the point return lies between the end points of the line segment. <br>
81       * Adapted from <a href="http://paulbourke.net/geometry/pointlineplane/DistancePoint.java"> example code provided by Paul
82       * Bourke</a>.
83       * @param lineP1 OTSPoint3D; start of line segment
84       * @param lineP2 OTSPoint3D; end of line segment
85       * @param point Point to project onto the line segment
86       * @return Point2D.Double; either <cite>lineP1</cite>, or <cite>lineP2</cite> or a new OTSPoint3D that lies somewhere in
87       *         between those two
88       */
89      public static OTSPoint3D closestPointOnSegmentToPoint(final OTSPoint3D lineP1, final OTSPoint3D lineP2,
90              final OTSPoint3D point)
91      {
92          double dX = lineP2.x - lineP1.x;
93          double dY = lineP2.y - lineP1.y;
94          if ((0 == dX) && (0 == dY))
95          {
96              return lineP1;
97          }
98          final double u = ((point.x - lineP1.x) * dX + (point.y - lineP1.y) * dY) / (dX * dX + dY * dY);
99          if (u < 0)
100         {
101             return lineP1;
102         }
103         else if (u > 1)
104         {
105             return lineP2;
106         }
107         else
108         {
109             return new OTSPoint3D(lineP1.x + u * dX, lineP1.y + u * dY); // could use interpolate in stead
110         }
111     }
112 
113     /**
114      * Construct parallel line without.
115      * @param referenceLine OTSLine3D; the reference line
116      * @param offset double; offset distance from the reference line; positive is LEFT, negative is RIGHT
117      * @return OTSLine3D; the line that has the specified offset from the reference line
118      */
119     public static OTSLine3D offsetLine(final OTSLine3D referenceLine, final double offset)
120     {
121         try
122         {
123             double bufferOffset = Math.abs(offset);
124             final double precision = 0.00001;
125             if (bufferOffset < precision)
126             {
127                 return referenceLine; // It is immutable; so we can safely return the original
128             }
129             final double circlePrecision = 0.001;
130             List<OTSPoint3D> points = new ArrayList<>();
131             // Make good use of the fact that an OTSLine3D cannot have consecutive duplicate points and has > 1 points
132             OTSPoint3D prevPoint = referenceLine.get(0);
133             Double prevAngle = null;
134             for (int index = 0; index < referenceLine.size() - 1; index++)
135             {
136                 OTSPoint3D nextPoint = referenceLine.get(index + 1);
137                 double angle = Math.atan2(nextPoint.y - prevPoint.y, nextPoint.x - prevPoint.x);
138                 OTSPoint3D segmentFrom =
139                         new OTSPoint3D(prevPoint.x - Math.sin(angle) * offset, prevPoint.y + Math.cos(angle) * offset);
140                 OTSPoint3D segmentTo =
141                         new OTSPoint3D(nextPoint.x - Math.sin(angle) * offset, nextPoint.y + Math.cos(angle) * offset);
142                 if (index > 0)
143                 {
144                     double deltaAngle = angle - prevAngle;
145                     if (Math.abs(deltaAngle) > Math.PI)
146                     {
147                         deltaAngle -= Math.signum(deltaAngle) * 2 * Math.PI;
148                     }
149                     if (deltaAngle * offset > 0)
150                     {
151                         // Inside of curve of reference line.
152                         // Add the intersection point of each previous segment and the next segment
153                         OTSPoint3D pPoint = null;
154                         for (int i = 0; i < points.size(); i++)
155                         {
156                             OTSPoint3D p = points.get(i);
157                             if (Double.isNaN(p.z))
158                             {
159                                 continue; // skip this one
160                             }
161                             if (null != pPoint)
162                             {
163                                 double pAngle = Math.atan2(p.y - pPoint.y, p.x - pPoint.x);
164                                 double totalAngle = angle - pAngle;
165                                 if (Math.abs(totalAngle) > Math.PI)
166                                 {
167                                     totalAngle += Math.signum(totalAngle) * 2 * Math.PI;
168                                 }
169                                 if (Math.abs(totalAngle) > 0.01)
170                                 {
171                                     // System.out.println("preceding segment " + pPoint + " to " + p + ", this segment "
172                                     // + segmentFrom + " to " + segmentTo + " totalAngle " + totalAngle);
173                                     OTSPoint3D intermediatePoint =
174                                             intersectionOfLineSegments(pPoint, p, segmentFrom, segmentTo);
175                                     if (null != intermediatePoint)
176                                     {
177                                         // mark it as added point at inside corner
178                                         intermediatePoint =
179                                                 new OTSPoint3D(intermediatePoint.x, intermediatePoint.y, Double.NaN);
180                                         // System.out.println("Inserting intersection of preceding segment and this segment "
181                                         // + intermediatePoint);
182                                         points.add(intermediatePoint);
183                                     }
184                                 }
185                             }
186                             pPoint = p;
187                         }
188                     }
189                     else
190                     {
191                         // Outside of curve of reference line
192                         // Approximate an arc using straight segments.
193                         // Determine how many segments are needed.
194                         int numSegments = 1;
195                         if (Math.abs(deltaAngle) > Math.PI / 2)
196                         {
197                             numSegments = 2;
198                         }
199                         for (; numSegments < 1000; numSegments *= 2)
200                         {
201                             double maxError = bufferOffset * (1 - Math.abs(Math.cos(deltaAngle / numSegments / 2)));
202                             if (maxError < circlePrecision)
203                             {
204                                 break; // required precision reached
205                             }
206                         }
207                         // Generate the intermediate points
208                         for (int additionalPoint = 1; additionalPoint < numSegments; additionalPoint++)
209                         {
210                             double intermediateAngle =
211                                     (additionalPoint * angle + (numSegments - additionalPoint) * prevAngle) / numSegments;
212                             if (prevAngle * angle < 0 && Math.abs(prevAngle) > Math.PI / 2 && Math.abs(angle) > Math.PI / 2)
213                             {
214                                 intermediateAngle += Math.PI;
215                             }
216                             OTSPoint3D intermediatePoint = new OTSPoint3D(prevPoint.x - Math.sin(intermediateAngle) * offset,
217                                     prevPoint.y + Math.cos(intermediateAngle) * offset);
218                             // System.out.println("inserting intermediate point " + intermediatePoint + " for angle "
219                             // + Math.toDegrees(intermediateAngle));
220                             points.add(intermediatePoint);
221                         }
222                     }
223                 }
224                 points.add(segmentFrom);
225                 points.add(segmentTo);
226                 prevPoint = nextPoint;
227                 prevAngle = angle;
228             }
229             // System.out.println(OTSGeometry.printCoordinates("#before cleanup: \nc0,0,0\n#", new OTSLine3D(points), "\n "));
230             // Remove points that are closer than the specified offset
231             for (int index = 1; index < points.size() - 1; index++)
232             {
233                 OTSPoint3D checkPoint = points.get(index);
234                 prevPoint = null;
235                 boolean tooClose = false;
236                 boolean somewhereAtCorrectDistance = false;
237                 for (int i = 0; i < referenceLine.size(); i++)
238                 {
239                     OTSPoint3D p = referenceLine.get(i);
240                     if (null != prevPoint)
241                     {
242                         OTSPoint3D closestPoint = closestPointOnSegmentToPoint(prevPoint, p, checkPoint);
243                         if (closestPoint != referenceLine.get(0) && closestPoint != referenceLine.get(referenceLine.size() - 1))
244                         {
245                             double distance = closestPoint.horizontalDistanceSI(checkPoint);
246                             if (distance < bufferOffset - circlePrecision)
247                             {
248                                 // System.out.print("point " + checkPoint + " inside buffer (distance is " + distance + ")");
249                                 tooClose = true;
250                                 break;
251                             }
252                             else if (distance < bufferOffset + precision)
253                             {
254                                 somewhereAtCorrectDistance = true;
255                             }
256                         }
257                     }
258                     prevPoint = p;
259                 }
260                 if (tooClose || !somewhereAtCorrectDistance)
261                 {
262                     // System.out.println("Removing " + checkPoint);
263                     points.remove(index);
264                     index--;
265                 }
266             }
267             // Fix the z-coordinate of all points that were added as intersections of segments.
268             for (int index = 0; index < points.size(); index++)
269             {
270                 OTSPoint3D p = points.get(index);
271                 if (Double.isNaN(p.z))
272                 {
273                     points.set(index, new OTSPoint3D(p.x, p.y, 0));
274                 }
275             }
276             return OTSLine3D.createAndCleanOTSLine3D(points);
277         }
278         catch (OTSGeometryException exception)
279         {
280             System.err.println("Cannot happen");
281             exception.printStackTrace();
282             return null;
283         }
284     }
285 
286     /**
287      * Compute the 2D intersection of two line segments. Both line segments are defined by two points (that should be distinct).
288      * @param line1P1 OTSPoint3D; first point of line 1
289      * @param line1P2 OTSPoint3D; second point of line 1
290      * @param line2P1 OTSPoint3D; first point of line 2
291      * @param line2P2 OTSPoint3D; second point of line 2
292      * @return OTSPoint3D; the intersection of the two lines, or null if the lines are (almost) parallel, or do not intersect
293      */
294     private static OTSPoint3D intersectionOfLineSegments(final OTSPoint3D line1P1, final OTSPoint3D line1P2,
295             final OTSPoint3D line2P1, final OTSPoint3D line2P2)
296     {
297         double denominator =
298                 (line2P2.y - line2P1.y) * (line1P2.x - line1P1.x) - (line2P2.x - line2P1.x) * (line1P2.y - line1P1.y);
299         if (denominator == 0f)
300         {
301             return null; // lines are parallel (they might even be on top of each other, but we don't check that)
302         }
303         double uA = ((line2P2.x - line2P1.x) * (line1P1.y - line2P1.y) - (line2P2.y - line2P1.y) * (line1P1.x - line2P1.x))
304                 / denominator;
305         if ((uA < 0f) || (uA > 1f))
306         {
307             return null; // intersection outside line 1
308         }
309         double uB = ((line1P2.x - line1P1.x) * (line1P1.y - line2P1.y) - (line1P2.y - line1P1.y) * (line1P1.x - line2P1.x))
310                 / denominator;
311         if (uB < 0 || uB > 1)
312         {
313             return null; // intersection outside line 2
314         }
315         return new OTSPoint3D(line1P1.x + uA * (line1P2.x - line1P1.x), line1P1.y + uA * (line1P2.y - line1P1.y), 0);
316     }
317 
318     /**
319      * Generate a Geometry that has a fixed offset from a reference Geometry.
320      * @param referenceLine Geometry; the reference line
321      * @param offset double; offset distance from the reference line; positive is LEFT, negative is RIGHT
322      * @return OTSLine3D; the line that has the specified offset from the reference line
323      * @throws OTSGeometryException on failure
324      */
325     @SuppressWarnings("checkstyle:methodlength")
326     public static OTSLine3D offsetGeometryOLD(final OTSLine3D referenceLine, final double offset) throws OTSGeometryException
327     {
328         Coordinate[] referenceCoordinates = referenceLine.getCoordinates();
329         // printCoordinates("reference", referenceCoordinates);
330         double bufferOffset = Math.abs(offset);
331         final double precision = 0.000001;
332         if (bufferOffset < precision) // if this is not added, and offset = 1E-16: CRASH
333         {
334             // return a copy of the reference line
335             return new OTSLine3D(referenceCoordinates);
336         }
337         Geometry geometryLine = referenceLine.getLineString();
338         Coordinate[] bufferCoordinates =
339                 geometryLine.buffer(bufferOffset, QUADRANTSEGMENTS, BufferParameters.CAP_FLAT).getCoordinates();
340 
341         // Z coordinates may be NaN at this point
342 
343         // find the coordinate indices closest to the start point and end point,
344         // at a distance of approximately the offset
345         Coordinate sC0 = referenceCoordinates[0];
346         Coordinate sC1 = referenceCoordinates[1];
347         Coordinate eCm1 = referenceCoordinates[referenceCoordinates.length - 1];
348         Coordinate eCm2 = referenceCoordinates[referenceCoordinates.length - 2];
349 
350         double expectedStartAngle = norm(angle(sC0, sC1) + Math.signum(offset) * Math.PI / 2.0);
351         double expectedEndAngle = norm(angle(eCm2, eCm1) + Math.signum(offset) * Math.PI / 2.0);
352         Coordinate sExpected = new Coordinate(sC0.x + bufferOffset * Math.cos(expectedStartAngle),
353                 sC0.y + bufferOffset * Math.sin(expectedStartAngle));
354         Coordinate eExpected = new Coordinate(eCm1.x + bufferOffset * Math.cos(expectedEndAngle),
355                 eCm1.y + bufferOffset * Math.sin(expectedEndAngle));
356 
357         // which coordinates are closest to sExpected and eExpected?
358         double dS = Double.MAX_VALUE;
359         double dE = Double.MAX_VALUE;
360         int sIndex = -1;
361         int eIndex = -1;
362         for (int i = 0; i < bufferCoordinates.length; i++)
363         {
364             Coordinate c = bufferCoordinates[i];
365             double dsc = c.distance(sExpected);
366             double dec = c.distance(eExpected);
367             if (dsc < dS)
368             {
369                 dS = dsc;
370                 sIndex = i;
371             }
372             if (dec < dE)
373             {
374                 dE = dec;
375                 eIndex = i;
376             }
377         }
378 
379         if (sIndex == -1)
380         {
381             throw new OTSGeometryException("offsetGeometry: startIndex not found for line " + referenceLine);
382         }
383         if (eIndex == -1)
384         {
385             throw new OTSGeometryException("offsetGeometry: endIndex not found for line " + referenceLine);
386         }
387         if (dS > 0.01)
388         {
389             System.err.println(referenceLine.toExcel() + "\n\n\n\n" + new OTSLine3D(bufferCoordinates).toExcel() + "\n\n\n\n"
390                     + sExpected + "\n" + eExpected);
391             throw new OTSGeometryException("offsetGeometry: startDistance too big (" + dS + ") for line " + referenceLine);
392         }
393         if (dE > 0.01)
394         {
395             throw new OTSGeometryException("offsetGeometry: endDistance too big (" + dE + ") for line " + referenceLine);
396         }
397 
398         // try positive direction
399         boolean ok = true;
400         int i = sIndex;
401         Coordinate lastC = null;
402         List<OTSPoint3D> result = new ArrayList<>();
403         while (ok)
404         {
405             Coordinate c = bufferCoordinates[i];
406             if (lastC != null && close(c, lastC, sC0, eCm1))
407             {
408                 ok = false;
409                 break;
410             }
411             result.add(new OTSPoint3D(c));
412             if (i == eIndex)
413             {
414                 return OTSLine3D.createAndCleanOTSLine3D(result);
415             }
416             i = (i == bufferCoordinates.length - 1) ? 0 : i + 1;
417             lastC = c;
418         }
419 
420         // try negative direction
421         ok = true;
422         i = sIndex;
423         lastC = null;
424         result = new ArrayList<>();
425         while (ok)
426         {
427             Coordinate c = bufferCoordinates[i];
428             if (lastC != null && close(c, lastC, sC0, eCm1))
429             {
430                 ok = false;
431                 break;
432             }
433             result.add(new OTSPoint3D(c));
434             if (i == eIndex)
435             {
436                 return OTSLine3D.createAndCleanOTSLine3D(result);
437             }
438             i = (i == 0) ? bufferCoordinates.length - 1 : i - 1;
439             lastC = c;
440         }
441 
442         /*- System.err.println(referenceLine.toExcel() + "\n\n\n\n" + new OTSLine3D(bufferCoordinates).toExcel()
443             + "\n\n\n\n" + sExpected + "\n" + eExpected); */
444         throw new OTSGeometryException("offsetGeometry: could not find offset in either direction for line " + referenceLine);
445     }
446 
447     /**
448      * Check if the points check[] are close to the line [lineC1..LineC2].
449      * @param lineC1 first point of the line
450      * @param lineC2 second point of the line
451      * @param check the coordinates to check
452      * @return whether one of the points to check is close to the line.
453      */
454     private static boolean close(final Coordinate lineC1, final Coordinate lineC2, final Coordinate... check)
455     {
456         Line2D.Double line = new Line2D.Double(lineC1.x, lineC1.y, lineC2.x, lineC2.y);
457         for (Coordinate c : check)
458         {
459             if (line.ptSegDist(c.x, c.y) < 0.01)
460             {
461                 return true;
462             }
463         }
464         return false;
465     }
466 
467     /**
468      * Create a line at linearly varying offset from a reference line. The offset may change linearly from its initial value at
469      * the start of the reference line to its final offset value at the end of the reference line.
470      * @param referenceLine Geometry; the Geometry of the reference line
471      * @param offsetAtStart double; offset at the start of the reference line (positive value is Left, negative value is Right)
472      * @param offsetAtEnd double; offset at the end of the reference line (positive value is Left, negative value is Right)
473      * @return Geometry; the Geometry of the line at linearly changing offset of the reference line
474      * @throws OTSGeometryException when this method fails to create the offset line
475      */
476     public static OTSLine3D offsetLine(final OTSLine3D referenceLine, final double offsetAtStart, final double offsetAtEnd)
477             throws OTSGeometryException
478     {
479         // System.out.println(OTSGeometry.printCoordinates("#referenceLine: \nc1,0,0\n# offset at start is " + offsetAtStart
480         // + " at end is " + offsetAtEnd + "\n#", referenceLine, "\n "));
481 
482         OTSLine3D offsetLineAtStart = offsetLine(referenceLine, offsetAtStart);
483         if (offsetAtStart == offsetAtEnd)
484         {
485             return offsetLineAtStart; // offset does not change
486         }
487         // System.out.println(OTSGeometry.printCoordinates("#offset line at start: \nc0,0,0\n#", offsetLineAtStart, "\n "));
488         OTSLine3D offsetLineAtEnd = offsetLine(referenceLine, offsetAtEnd);
489         // System.out.println(OTSGeometry.printCoordinates("#offset line at end: \nc0.7,0.7,0.7\n#", offsetLineAtEnd, "\n "));
490         Geometry startGeometry = offsetLineAtStart.getLineString();
491         Geometry endGeometry = offsetLineAtEnd.getLineString();
492         LengthIndexedLine first = new LengthIndexedLine(startGeometry);
493         double firstLength = startGeometry.getLength();
494         LengthIndexedLine second = new LengthIndexedLine(endGeometry);
495         double secondLength = endGeometry.getLength();
496         ArrayList<Coordinate> out = new ArrayList<Coordinate>();
497         Coordinate[] firstCoordinates = startGeometry.getCoordinates();
498         Coordinate[] secondCoordinates = endGeometry.getCoordinates();
499         int firstIndex = 0;
500         int secondIndex = 0;
501         Coordinate prevCoordinate = null;
502         final double tooClose = 0.05; // 5 cm
503         while (firstIndex < firstCoordinates.length && secondIndex < secondCoordinates.length)
504         {
505             double firstRatio = firstIndex < firstCoordinates.length ? first.indexOf(firstCoordinates[firstIndex]) / firstLength
506                     : Double.MAX_VALUE;
507             double secondRatio = secondIndex < secondCoordinates.length
508                     ? second.indexOf(secondCoordinates[secondIndex]) / secondLength : Double.MAX_VALUE;
509             double ratio;
510             if (firstRatio < secondRatio)
511             {
512                 ratio = firstRatio;
513                 firstIndex++;
514             }
515             else
516             {
517                 ratio = secondRatio;
518                 secondIndex++;
519             }
520             Coordinate firstCoordinate = first.extractPoint(ratio * firstLength);
521             Coordinate secondCoordinate = second.extractPoint(ratio * secondLength);
522             Coordinate resultCoordinate = new Coordinate((1 - ratio) * firstCoordinate.x + ratio * secondCoordinate.x,
523                     (1 - ratio) * firstCoordinate.y + ratio * secondCoordinate.y);
524             if (null == prevCoordinate || resultCoordinate.distance(prevCoordinate) > tooClose)
525             {
526                 out.add(resultCoordinate);
527                 prevCoordinate = resultCoordinate;
528             }
529         }
530         Coordinate[] resultCoordinates = new Coordinate[out.size()];
531         for (int index = 0; index < out.size(); index++)
532         {
533             resultCoordinates[index] = out.get(index);
534         }
535         return new OTSLine3D(resultCoordinates);
536     }
537 
538     /**
539      * @param args args
540      * @throws NetworkException on error
541      * @throws OTSGeometryException on error
542      */
543     public static void main(final String[] args) throws NetworkException, OTSGeometryException
544     {
545         // OTSLine3D line =
546         // new OTSLine3D(new OTSPoint3D[]{new OTSPoint3D(-579.253, 60.157, 1.568),
547         // new OTSPoint3D(-579.253, 60.177, 1.568)});
548         // double offset = 4.83899987;
549         // System.out.println(OTSBufferingOLD.offsetGeometryOLD(line, offset));
550         OTSLine3D line = new OTSLine3D(new OTSPoint3D[] { new OTSPoint3D(-579.253, 60.157, 4.710),
551                 new OTSPoint3D(-579.253, 60.144, 4.712), new OTSPoint3D(-579.253, 60.144, 0.000),
552                 new OTSPoint3D(-579.251, 60.044, 0.000), new OTSPoint3D(-579.246, 59.944, 0.000),
553                 new OTSPoint3D(-579.236, 59.845, 0.000), new OTSPoint3D(-579.223, 59.746, 0.000),
554                 new OTSPoint3D(-579.206, 59.647, 0.000), new OTSPoint3D(-579.185, 59.549, 0.000),
555                 new OTSPoint3D(-579.161, 59.452, 0.000), new OTSPoint3D(-579.133, 59.356, 0.000),
556                 new OTSPoint3D(-579.101, 59.261, 0.000), new OTSPoint3D(-579.066, 59.168, 0.000),
557                 new OTSPoint3D(-579.028, 59.075, 0.000), new OTSPoint3D(-578.986, 58.985, 0.000),
558                 new OTSPoint3D(-578.940, 58.896, 0.000), new OTSPoint3D(-578.891, 58.809, 0.000),
559                 new OTSPoint3D(-578.839, 58.723, 0.000), new OTSPoint3D(-578.784, 58.640, 0.000),
560                 new OTSPoint3D(-578.725, 58.559, 0.000), new OTSPoint3D(-578.664, 58.480, 0.000),
561                 new OTSPoint3D(-578.599, 58.403, 0.000), new OTSPoint3D(-578.532, 58.329, 0.000),
562                 new OTSPoint3D(-578.462, 58.258, 0.000), new OTSPoint3D(-578.390, 58.189, 0.000),
563                 new OTSPoint3D(-578.314, 58.123, 0.000), new OTSPoint3D(-578.237, 58.060, 0.000),
564                 new OTSPoint3D(-578.157, 58.000, 0.000), new OTSPoint3D(-578.075, 57.943, 0.000),
565                 new OTSPoint3D(-577.990, 57.889, 0.000), new OTSPoint3D(-577.904, 57.839, 0.000),
566                 new OTSPoint3D(-577.816, 57.791, 0.000), new OTSPoint3D(-577.726, 57.747, 0.000),
567                 new OTSPoint3D(-577.635, 57.707, 0.000), new OTSPoint3D(-577.542, 57.670, 0.000),
568                 new OTSPoint3D(-577.448, 57.636, 0.000), new OTSPoint3D(-577.352, 57.606, 0.000),
569                 new OTSPoint3D(-577.256, 57.580, 0.000), new OTSPoint3D(-577.159, 57.557, 0.000),
570                 new OTSPoint3D(-577.060, 57.538, 0.000), new OTSPoint3D(-576.962, 57.523, 0.000),
571                 new OTSPoint3D(-576.862, 57.512, 0.000), new OTSPoint3D(-576.763, 57.504, 0.000),
572                 new OTSPoint3D(-576.663, 57.500, 0.000), new OTSPoint3D(-576.623, 57.500, 6.278),
573                 new OTSPoint3D(-576.610, 57.500, 6.280), new OTSPoint3D(-567.499, 57.473, 6.280) });
574         System.out.println(line.toExcel());
575         System.out.println(OTSBufferingJTS.offsetGeometryOLD(line, -1.831));
576     }
577 }