View Javadoc
1   package org.opentrafficsim.core.geometry;
2   
3   import java.awt.geom.Line2D;
4   import java.awt.geom.Path2D;
5   import java.awt.geom.PathIterator;
6   import java.awt.geom.Point2D;
7   import java.io.Serializable;
8   import java.util.ArrayList;
9   import java.util.Arrays;
10  import java.util.List;
11  import java.util.Locale;
12  
13  import javax.media.j3d.Bounds;
14  import javax.vecmath.Point3d;
15  
16  import org.djunits.unit.DirectionUnit;
17  import org.djunits.unit.LengthUnit;
18  import org.djunits.value.vdouble.scalar.Direction;
19  import org.djunits.value.vdouble.scalar.Length;
20  
21  import com.vividsolutions.jts.geom.Coordinate;
22  import com.vividsolutions.jts.geom.CoordinateSequence;
23  import com.vividsolutions.jts.geom.Envelope;
24  import com.vividsolutions.jts.geom.Geometry;
25  import com.vividsolutions.jts.geom.GeometryFactory;
26  import com.vividsolutions.jts.geom.LineString;
27  import com.vividsolutions.jts.linearref.LengthIndexedLine;
28  
29  import edu.umd.cs.findbugs.annotations.SuppressFBWarnings;
30  import nl.tudelft.simulation.dsol.animation.Locatable;
31  import nl.tudelft.simulation.language.d3.BoundingBox;
32  import nl.tudelft.simulation.language.d3.DirectedPoint;
33  
34  /**
35   * Line with OTSPoint3D points, a cached length indexed line, a cahced length, and a cached centroid (all calculated on first
36   * use).
37   * <p>
38   * Copyright (c) 2013-2018 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
39   * BSD-style license. See <a href="http://opentrafficsim.org/docs/license.html">OpenTrafficSim License</a>.
40   * <p>
41   * $LastChangedDate: 2015-07-16 10:20:53 +0200 (Thu, 16 Jul 2015) $, @version $Revision: 1124 $, by $Author: pknoppers $,
42   * initial version Jul 22, 2015 <br>
43   * @author <a href="http://www.tbm.tudelft.nl/averbraeck">Alexander Verbraeck</a>
44   * @author <a href="http://www.tudelft.nl/pknoppers">Peter Knoppers</a>
45   * @author <a href="http://www.citg.tudelft.nl">Guus Tamminga</a>
46   * @author <a href="http://www.transport.citg.tudelft.nl">Wouter Schakel</a>
47   */
48  public class OTSLine3D implements Locatable, Serializable
49  {
50      /** */
51      private static final long serialVersionUID = 20150722L;
52  
53      /** The points of the line. */
54      private OTSPoint3D[] points;
55  
56      /** The cumulative length of the line at point 'i'. */
57      private double[] lengthIndexedLine = null;
58  
59      /** The cached length; will be calculated when needed for the first time. */
60      private double length = Double.NaN;
61  
62      /** The cached centroid; will be calculated when needed for the first time. */
63      private OTSPoint3D centroid = null;
64  
65      /** The cached bounds; will be calculated when needed for the first time. */
66      private Bounds bounds = null;
67  
68      /** The cached helper points for fractional projection; will be calculated when needed for the first time. */
69      private OTSPoint3D[] fractionalHelperCenters = null;
70  
71      /** The cached helper directions for fractional projection; will be calculated when needed for the first time. */
72      private Point2D.Double[] fractionalHelperDirections = null;
73  
74      /** Intersection of unit offset lines of first two segments. */
75      private OTSPoint3D firstOffsetIntersection;
76  
77      /** Intersection of unit offset lines of last two segments. */
78      private OTSPoint3D lastOffsetIntersection;
79  
80      /** Precision for fractional projection algorithm. */
81      private static final double FRAC_PROJ_PRECISION = 2e-5 /* PK too fine 1e-6 */;
82  
83      /** Bounding of this OTSLine3D. */
84      private Envelope envelope;
85  
86      /**
87       * Construct a new OTSLine3D.
88       * @param points the array of points to construct this OTSLine3D from.
89       * @throws OTSGeometryException when the provided points do not constitute a valid line (too few points or identical
90       *             adjacent points)
91       */
92      public OTSLine3D(final OTSPoint3D... points) throws OTSGeometryException
93      {
94          init(points);
95      }
96  
97      /**
98       * Construct a new OTSLine3D, and immediately make the length-indexed line.
99       * @param pts the array of points to construct this OTSLine3D from.
100      * @throws OTSGeometryException when the provided points do not constitute a valid line (too few points or identical
101      *             adjacent points)
102      */
103     private void init(final OTSPoint3D... pts) throws OTSGeometryException
104     {
105         if (pts.length < 2)
106         {
107             throw new OTSGeometryException("Degenerate OTSLine3D; has " + pts.length + " point" + (pts.length != 1 ? "s" : ""));
108         }
109         this.lengthIndexedLine = new double[pts.length];
110         this.lengthIndexedLine[0] = 0.0;
111         for (int i = 1; i < pts.length; i++)
112         {
113             if (pts[i - 1].x == pts[i].x && pts[i - 1].y == pts[i].y && pts[i - 1].z == pts[i].z)
114             {
115                 throw new OTSGeometryException(
116                         "Degenerate OTSLine3D; point " + (i - 1) + " has the same x, y and z as point " + i);
117             }
118             this.lengthIndexedLine[i] = this.lengthIndexedLine[i - 1] + pts[i - 1].distanceSI(pts[i]);
119         }
120         this.points = pts;
121     }
122 
123     /** Which offsetLine method to use... */
124     public enum OffsetMethod
125     {
126         /** Via JTS buffer. */
127         JTS,
128 
129         /** Peter Knoppers. */
130         PK;
131     };
132 
133     /** Which offset line method to use... */
134     public static final OffsetMethod OFFSETMETHOD = OffsetMethod.PK;
135 
136     /**
137      * Construct parallel line.<br>
138      * TODO Let the Z-component of the result follow the Z-values of the reference line.
139      * @param offset double; offset distance from the reference line; positive is LEFT, negative is RIGHT
140      * @return OTSLine3D; the line that has the specified offset from the reference line
141      */
142     public final OTSLine3D offsetLine(final double offset)
143     {
144         try
145         {
146             switch (OFFSETMETHOD)
147             {
148                 case PK:
149                     return OTSOffsetLinePK.offsetLine(this, offset);
150 
151                 case JTS:
152                     return OTSBufferingJTS.offsetGeometryOLD(this, offset);
153 
154                 default:
155                     return null;
156             }
157         }
158         catch (OTSGeometryException exception)
159         {
160             exception.printStackTrace();
161             return null;
162         }
163     }
164 
165     /**
166      * Construct a line that is equal to this line except for segments that are shorter than the <cite>noiseLevel</cite>. The
167      * result is guaranteed to start with the first point of this line and end with the last point of this line.
168      * @param noiseLevel double; the minimum segment length that is <b>not</b> removed
169      * @return OTSLine3D; the filtered line
170      */
171     public final OTSLine3D noiseFilteredLine(final double noiseLevel)
172     {
173         if (this.size() <= 2)
174         {
175             return this; // Except for some cached fields; an OTSLine3D is immutable; so safe to return
176         }
177         OTSPoint3D prevPoint = null;
178         List<OTSPoint3D> list = null;
179         for (int index = 0; index < this.size(); index++)
180         {
181             OTSPoint3D currentPoint = this.points[index];
182             if (null != prevPoint && prevPoint.distanceSI(currentPoint) < noiseLevel)
183             {
184                 if (null == list)
185                 {
186                     // Found something to filter; copy this up to (and including) prevPoint
187                     list = new ArrayList<>();
188                     for (int i = 0; i < index; i++)
189                     {
190                         list.add(this.points[i]);
191                     }
192                 }
193                 if (index == this.size() - 1)
194                 {
195                     if (list.size() > 1)
196                     {
197                         // Replace the last point of the result by the last point of this OTSLine3D
198                         list.set(list.size() - 1, currentPoint);
199                     }
200                     else
201                     {
202                         // Append the last point of this even though it is close to the first point than the noise value to
203                         // comply with the requirement that first and last point of this are ALWAYS included in the result.
204                         list.add(currentPoint);
205                     }
206                 }
207                 continue; // Do not replace prevPoint by currentPoint
208             }
209             else if (null != list)
210             {
211                 list.add(currentPoint);
212             }
213             prevPoint = currentPoint;
214         }
215         if (null == list)
216         {
217             return this;
218         }
219         try
220         {
221             return new OTSLine3D(list);
222         }
223         catch (OTSGeometryException exception)
224         {
225             System.err.println("CANNOT HAPPEN");
226             exception.printStackTrace();
227             throw new Error(exception);
228         }
229     }
230 
231     /**
232      * Clean up a list of points that describe a polyLine by removing points that lie within epsilon distance of a more
233      * straightened version of the line. <br>
234      * TODO Test this code (currently untested).
235      * @param epsilon double; maximal deviation
236      * @param useHorizontalDistance boolean; if true; the horizontal distance is used; if false; the 3D distance is used
237      * @return OTSLine3D; a new OTSLine3D containing all the remaining points
238      */
239     public final OTSLine3D noiseFilterRamerDouglasPeuker(final double epsilon, final boolean useHorizontalDistance)
240     {
241         // TODO rename this filter to noiseFilterRamerDouglasPeucker (with a c in Peucker).
242         try
243         {
244             // Apply the Ramer-Douglas-Peucker algorithm to the buffered points.
245             // Adapted from https://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm
246             double maxDeviation = 0;
247             int splitIndex = -1;
248             int pointCount = size();
249             OTSLine3D straight = new OTSLine3D(get(0), get(pointCount - 1));
250             // Find the point with largest deviation from the straight line from start point to end point
251             for (int i = 1; i < pointCount - 1; i++)
252             {
253                 OTSPoint3D point = get(i);
254                 OTSPoint3D closest =
255                         useHorizontalDistance ? point.closestPointOnLine2D(straight) : point.closestPointOnLine(straight);
256                 double deviation = useHorizontalDistance ? closest.horizontalDistanceSI(point) : closest.distanceSI(point);
257                 if (deviation > maxDeviation)
258                 {
259                     splitIndex = i;
260                     maxDeviation = deviation;
261                 }
262             }
263             if (maxDeviation <= epsilon)
264             {
265                 // All intermediate points can be dropped. Return a new list containing only the first and last point.
266                 return straight;
267             }
268             // The largest deviation is larger than epsilon.
269             // Split the polyLine at the point with the maximum deviation. Process each sub list recursively and concatenate the
270             // results
271             OTSLine3D first = new OTSLine3D(Arrays.copyOfRange(this.points, 0, splitIndex + 1))
272                     .noiseFilterRamerDouglasPeuker(epsilon, useHorizontalDistance);
273             OTSLine3D second = new OTSLine3D(Arrays.copyOfRange(this.points, splitIndex, this.points.length))
274                     .noiseFilterRamerDouglasPeuker(epsilon, useHorizontalDistance);
275             return concatenate(epsilon, first, second);
276         }
277         catch (OTSGeometryException exception)
278         {
279             exception.printStackTrace(); // Peter thinks this cannot happen ...
280             return null;
281         }
282     }
283 
284     /**
285      * Create a line at linearly varying offset from this line. The offset may change linearly from its initial value at the
286      * start of the reference line to its final offset value at the end of the reference line.
287      * @param offsetAtStart double; offset at the start of the reference line (positive value is Left, negative value is Right)
288      * @param offsetAtEnd double; offset at the end of the reference line (positive value is Left, negative value is Right)
289      * @return Geometry; the Geometry of the line at linearly changing offset of the reference line
290      * @throws OTSGeometryException when this method fails to create the offset line
291      */
292     public final OTSLine3D offsetLine(final double offsetAtStart, final double offsetAtEnd) throws OTSGeometryException
293     {
294         // System.out.println(OTSGeometry.printCoordinates("#referenceLine: \nc1,0,0\n# offset at start is " + offsetAtStart
295         // + " at end is " + offsetAtEnd + "\n#", referenceLine, "\n "));
296 
297         OTSLine3D offsetLineAtStart = offsetLine(offsetAtStart);
298         if (offsetAtStart == offsetAtEnd)
299         {
300             return offsetLineAtStart; // offset does not change
301         }
302         // System.out.println(OTSGeometry.printCoordinates("#offset line at start: \nc0,0,0\n#", offsetLineAtStart, "\n "));
303         OTSLine3D offsetLineAtEnd = offsetLine(offsetAtEnd);
304         // System.out.println(OTSGeometry.printCoordinates("#offset line at end: \nc0.7,0.7,0.7\n#", offsetLineAtEnd, "\n "));
305         Geometry startGeometry = offsetLineAtStart.getLineString();
306         Geometry endGeometry = offsetLineAtEnd.getLineString();
307         LengthIndexedLine first = new LengthIndexedLine(startGeometry);
308         double firstLength = startGeometry.getLength();
309         LengthIndexedLine second = new LengthIndexedLine(endGeometry);
310         double secondLength = endGeometry.getLength();
311         ArrayList<Coordinate> out = new ArrayList<>();
312         Coordinate[] firstCoordinates = startGeometry.getCoordinates();
313         Coordinate[] secondCoordinates = endGeometry.getCoordinates();
314         int firstIndex = 0;
315         int secondIndex = 0;
316         Coordinate prevCoordinate = null;
317         final double tooClose = 0.05; // 5 cm
318         while (firstIndex < firstCoordinates.length && secondIndex < secondCoordinates.length)
319         {
320             double firstRatio = firstIndex < firstCoordinates.length ? first.indexOf(firstCoordinates[firstIndex]) / firstLength
321                     : Double.MAX_VALUE;
322             double secondRatio = secondIndex < secondCoordinates.length
323                     ? second.indexOf(secondCoordinates[secondIndex]) / secondLength : Double.MAX_VALUE;
324             double ratio;
325             if (firstRatio < secondRatio)
326             {
327                 ratio = firstRatio;
328                 firstIndex++;
329             }
330             else
331             {
332                 ratio = secondRatio;
333                 secondIndex++;
334             }
335             Coordinate firstCoordinate = first.extractPoint(ratio * firstLength);
336             Coordinate secondCoordinate = second.extractPoint(ratio * secondLength);
337             Coordinate resultCoordinate = new Coordinate((1 - ratio) * firstCoordinate.x + ratio * secondCoordinate.x,
338                     (1 - ratio) * firstCoordinate.y + ratio * secondCoordinate.y);
339             if (null == prevCoordinate || resultCoordinate.distance(prevCoordinate) > tooClose)
340             {
341                 out.add(resultCoordinate);
342                 prevCoordinate = resultCoordinate;
343             }
344         }
345         Coordinate[] resultCoordinates = new Coordinate[out.size()];
346         for (int index = 0; index < out.size(); index++)
347         {
348             resultCoordinates[index] = out.get(index);
349         }
350         return new OTSLine3D(resultCoordinates);
351     }
352 
353     /**
354      * Create a line at linearly varying offset from this line. The offset may change linearly from its initial value at the
355      * start of the reference line via a number of intermediate offsets at intermediate positions to its final offset value at
356      * the end of the reference line.
357      * @param relativeFractions double[]; positional fractions for which the offsets have to be generated
358      * @param offsets double[]; offsets at the relative positions (positive value is Left, negative value is Right)
359      * @return Geometry; the Geometry of the line at linearly changing offset of the reference line
360      * @throws OTSGeometryException when this method fails to create the offset line
361      */
362     public final OTSLine3D offsetLine(final double[] relativeFractions, final double[] offsets) throws OTSGeometryException
363     {
364         OTSLine3D[] offsetLine = new OTSLine3D[relativeFractions.length];
365         for (int i = 0; i < offsets.length; i++)
366         {
367             offsetLine[i] = offsetLine(offsets[i]);
368             // System.out.println(offsetLine[i].toExcel());
369             // System.out.println();
370         }
371 
372         ArrayList<Coordinate> out = new ArrayList<>();
373         Coordinate prevCoordinate = null;
374         final double tooClose = 0.05; // 5 cm
375         for (int i = 0; i < offsets.length - 1; i++)
376         {
377             Geometry startGeometry =
378                     offsetLine[i].extractFractional(relativeFractions[i], relativeFractions[i + 1]).getLineString();
379             Geometry endGeometry =
380                     offsetLine[i + 1].extractFractional(relativeFractions[i], relativeFractions[i + 1]).getLineString();
381             LengthIndexedLine first = new LengthIndexedLine(startGeometry);
382             double firstLength = startGeometry.getLength();
383             LengthIndexedLine second = new LengthIndexedLine(endGeometry);
384             double secondLength = endGeometry.getLength();
385             Coordinate[] firstCoordinates = startGeometry.getCoordinates();
386             Coordinate[] secondCoordinates = endGeometry.getCoordinates();
387             int firstIndex = 0;
388             int secondIndex = 0;
389             while (firstIndex < firstCoordinates.length && secondIndex < secondCoordinates.length)
390             {
391                 double firstRatio = firstIndex < firstCoordinates.length
392                         ? first.indexOf(firstCoordinates[firstIndex]) / firstLength : Double.MAX_VALUE;
393                 double secondRatio = secondIndex < secondCoordinates.length
394                         ? second.indexOf(secondCoordinates[secondIndex]) / secondLength : Double.MAX_VALUE;
395                 double ratio;
396                 if (firstRatio < secondRatio)
397                 {
398                     ratio = firstRatio;
399                     firstIndex++;
400                 }
401                 else
402                 {
403                     ratio = secondRatio;
404                     secondIndex++;
405                 }
406                 Coordinate firstCoordinate = first.extractPoint(ratio * firstLength);
407                 Coordinate secondCoordinate = second.extractPoint(ratio * secondLength);
408                 Coordinate resultCoordinate = new Coordinate((1 - ratio) * firstCoordinate.x + ratio * secondCoordinate.x,
409                         (1 - ratio) * firstCoordinate.y + ratio * secondCoordinate.y);
410                 if (null == prevCoordinate || resultCoordinate.distance(prevCoordinate) > tooClose)
411                 {
412                     out.add(resultCoordinate);
413                     prevCoordinate = resultCoordinate;
414                 }
415             }
416         }
417 
418         Coordinate[] resultCoordinates = new Coordinate[out.size()];
419         for (int index = 0; index < out.size(); index++)
420         {
421             resultCoordinates[index] = out.get(index);
422         }
423         return new OTSLine3D(resultCoordinates);
424     }
425 
426     /**
427      * Concatenate several OTSLine3D instances.
428      * @param lines OTSLine3D... one or more OTSLine3D. The last point of the first <strong>must</strong> match the first of the
429      *            second, etc.
430      * @return OTSLine3D
431      * @throws OTSGeometryException if zero lines are given, or when there is a gap between consecutive lines
432      */
433     public static OTSLine3D concatenate(final OTSLine3D... lines) throws OTSGeometryException
434     {
435         return concatenate(0.0, lines);
436     }
437 
438     /**
439      * Concatenate two OTSLine3D instances. This method is separate for efficiency reasons.
440      * @param toleranceSI the tolerance between the end point of a line and the first point of the next line
441      * @param line1 OTSLine3D; first line
442      * @param line2 OTSLine3D; second line
443      * @return OTSLine3D
444      * @throws OTSGeometryException if zero lines are given, or when there is a gap between consecutive lines
445      */
446     public static OTSLine3D concatenate(final double toleranceSI, final OTSLine3D line1, final OTSLine3D line2)
447             throws OTSGeometryException
448     {
449         if (line1.getLast().distance(line2.getFirst()).si > toleranceSI)
450         {
451             throw new OTSGeometryException("Lines are not connected: " + line1.getLast() + " to " + line2.getFirst()
452                     + " distance is " + line1.getLast().distance(line2.getFirst()).si + " > " + toleranceSI);
453         }
454         int size = line1.size() + line2.size() - 1;
455         OTSPoint3D[] points = new OTSPoint3D[size];
456         int nextIndex = 0;
457         for (int j = 0; j < line1.size(); j++)
458         {
459             points[nextIndex++] = line1.get(j);
460         }
461         for (int j = 1; j < line2.size(); j++)
462         {
463             points[nextIndex++] = line2.get(j);
464         }
465         return new OTSLine3D(points);
466     }
467 
468     /**
469      * Concatenate several OTSLine3D instances.
470      * @param toleranceSI the tolerance between the end point of a line and the first point of the next line
471      * @param lines OTSLine3D... one or more OTSLine3D. The last point of the first <strong>must</strong> match the first of the
472      *            second, etc.
473      * @return OTSLine3D
474      * @throws OTSGeometryException if zero lines are given, or when there is a gap between consecutive lines
475      */
476     public static OTSLine3D concatenate(final double toleranceSI, final OTSLine3D... lines) throws OTSGeometryException
477     {
478         // System.out.println("Concatenating " + lines.length + " lines.");
479         if (0 == lines.length)
480         {
481             throw new OTSGeometryException("Empty argument list");
482         }
483         else if (1 == lines.length)
484         {
485             return lines[0];
486         }
487         int size = lines[0].size();
488         for (int i = 1; i < lines.length; i++)
489         {
490             if (lines[i - 1].getLast().distance(lines[i].getFirst()).si > toleranceSI)
491             {
492                 throw new OTSGeometryException(
493                         "Lines are not connected: " + lines[i - 1].getLast() + " to " + lines[i].getFirst() + " distance is "
494                                 + lines[i - 1].getLast().distance(lines[i].getFirst()).si + " > " + toleranceSI);
495             }
496             size += lines[i].size() - 1;
497         }
498         OTSPoint3D[] points = new OTSPoint3D[size];
499         int nextIndex = 0;
500         for (int i = 0; i < lines.length; i++)
501         {
502             OTSLine3D line = lines[i];
503             for (int j = 0 == i ? 0 : 1; j < line.size(); j++)
504             {
505                 points[nextIndex++] = line.get(j);
506             }
507         }
508         return new OTSLine3D(points);
509     }
510 
511     /**
512      * Construct a new OTSLine3D with all points of this OTSLine3D in reverse order.
513      * @return OTSLine3D; the new OTSLine3D
514      */
515     public final OTSLine3D reverse()
516     {
517         OTSPoint3D[] resultPoints = new OTSPoint3D[size()];
518         int nextIndex = size();
519         for (OTSPoint3D p : getPoints())
520         {
521             resultPoints[--nextIndex] = p;
522         }
523         try
524         {
525             return new OTSLine3D(resultPoints);
526         }
527         catch (OTSGeometryException exception)
528         {
529             // Cannot happen
530             throw new RuntimeException(exception);
531         }
532     }
533 
534     /**
535      * Construct a new OTSLine3D covering the indicated fraction of this OTSLine3D.
536      * @param start double; starting point, valid range [0..<cite>end</cite>)
537      * @param end double; ending point, valid range (<cite>start</cite>..1]
538      * @return OTSLine3D; the new OTSLine3D
539      * @throws OTSGeometryException when start &gt;= end, or start &lt; 0, or end &gt; 1
540      */
541     public final OTSLine3D extractFractional(final double start, final double end) throws OTSGeometryException
542     {
543         if (start < 0 || start >= end || end > 1)
544         {
545             throw new OTSGeometryException("Bad interval");
546         }
547         getLength(); // computes and sets the length field
548         return extract(start * this.length, end * this.length);
549     }
550 
551     /**
552      * Create a new OTSLine3D that covers a sub-section of this OTSLine3D.
553      * @param start Length; the length along this OTSLine3D where the sub-section starts, valid range [0..<cite>end</cite>)
554      * @param end Length; length along this OTSLine3D where the sub-section ends, valid range
555      *            (<cite>start</cite>..<cite>length</cite> (length is the length of this OTSLine3D)
556      * @return OTSLine3D; the selected sub-section
557      * @throws OTSGeometryException when start &gt;= end, or start &lt; 0, or end &gt; length
558      */
559     public final OTSLine3D extract(final Length start, final Length end) throws OTSGeometryException
560     {
561         return extract(start.si, end.si);
562     }
563 
564     /**
565      * Create a new OTSLine3D that covers a sub-section of this OTSLine3D.
566      * @param start double; length along this OTSLine3D where the sub-section starts, valid range [0..<cite>end</cite>)
567      * @param end double; length along this OTSLine3D where the sub-section ends, valid range
568      *            (<cite>start</cite>..<cite>length</cite> (length is the length of this OTSLine3D)
569      * @return OTSLine3D; the selected sub-section
570      * @throws OTSGeometryException when start &gt;= end, or start &lt; 0, or end &gt; length
571      */
572     @SuppressFBWarnings("FE_FLOATING_POINT_EQUALITY")
573     public final OTSLine3D extract(final double start, final double end) throws OTSGeometryException
574     {
575         if (Double.isNaN(start) || Double.isNaN(end) || start < 0 || start >= end || end > getLengthSI())
576         {
577             throw new OTSGeometryException(
578                     "Bad interval (" + start + ".." + end + "; length of this OTSLine3D is " + this.getLengthSI() + ")");
579         }
580         double cumulativeLength = 0;
581         double nextCumulativeLength = 0;
582         double segmentLength = 0;
583         int index = 0;
584         List<OTSPoint3D> pointList = new ArrayList<>();
585         // System.err.println("interval " + start + ".." + end);
586         while (start > cumulativeLength)
587         {
588             OTSPoint3D fromPoint = this.points[index];
589             index++;
590             OTSPoint3D toPoint = this.points[index];
591             segmentLength = fromPoint.distanceSI(toPoint);
592             cumulativeLength = nextCumulativeLength;
593             nextCumulativeLength = cumulativeLength + segmentLength;
594             if (nextCumulativeLength >= start)
595             {
596                 break;
597             }
598         }
599         if (start == nextCumulativeLength)
600         {
601             pointList.add(this.points[index]);
602         }
603         else
604         {
605             pointList.add(OTSPoint3D.interpolate((start - cumulativeLength) / segmentLength, this.points[index - 1],
606                     this.points[index]));
607             if (end > nextCumulativeLength)
608             {
609                 pointList.add(this.points[index]);
610             }
611         }
612         while (end > nextCumulativeLength)
613         {
614             OTSPoint3D fromPoint = this.points[index];
615             index++;
616             if (index >= this.points.length)
617             {
618                 break; // rounding error
619             }
620             OTSPoint3D toPoint = this.points[index];
621             segmentLength = fromPoint.distanceSI(toPoint);
622             cumulativeLength = nextCumulativeLength;
623             nextCumulativeLength = cumulativeLength + segmentLength;
624             if (nextCumulativeLength >= end)
625             {
626                 break;
627             }
628             pointList.add(toPoint);
629         }
630         if (end == nextCumulativeLength)
631         {
632             pointList.add(this.points[index]);
633         }
634         else
635         {
636             OTSPoint3D point = OTSPoint3D.interpolate((end - cumulativeLength) / segmentLength, this.points[index - 1],
637                     this.points[index]);
638             // can be the same due to rounding
639             if (!point.equals(pointList.get(pointList.size() - 1)))
640             {
641                 pointList.add(point);
642             }
643         }
644         try
645         {
646             return new OTSLine3D(pointList);
647         }
648         catch (@SuppressWarnings("unused") OTSGeometryException exception)
649         {
650             System.err.println("interval " + start + ".." + end + " too short");
651             throw new OTSGeometryException("interval " + start + ".." + end + "too short");
652         }
653     }
654 
655     /**
656      * Build an array of OTSPoint3D from an array of Coordinate.
657      * @param coordinates Coordinate[]; the coordinates
658      * @return OTSPoint3D[]
659      */
660     private static OTSPoint3D[] coordinatesToOTSPoint3D(final Coordinate[] coordinates)
661     {
662         OTSPoint3D[] result = new OTSPoint3D[coordinates.length];
663         for (int i = 0; i < coordinates.length; i++)
664         {
665             result[i] = new OTSPoint3D(coordinates[i]);
666         }
667         return result;
668     }
669 
670     /**
671      * Create an OTSLine3D, while cleaning repeating successive points.
672      * @param points the coordinates of the line as OTSPoint3D
673      * @return the line
674      * @throws OTSGeometryException when number of points &lt; 2
675      */
676     public static OTSLine3D createAndCleanOTSLine3D(final OTSPoint3D... points) throws OTSGeometryException
677     {
678         if (points.length < 2)
679         {
680             throw new OTSGeometryException(
681                     "Degenerate OTSLine3D; has " + points.length + " point" + (points.length != 1 ? "s" : ""));
682         }
683         return createAndCleanOTSLine3D(new ArrayList<>(Arrays.asList(points)));
684     }
685 
686     /**
687      * Create an OTSLine3D, while cleaning repeating successive points.
688      * @param pointList List&lt;OTSPoint3D&gt;; list of the coordinates of the line as OTSPoint3D; any duplicate points in this
689      *            list are removed (this method may modify the provided list)
690      * @return OTSLine3D; the line
691      * @throws OTSGeometryException when number of non-equal points &lt; 2
692      */
693     public static OTSLine3D createAndCleanOTSLine3D(final List<OTSPoint3D> pointList) throws OTSGeometryException
694     {
695         // clean successive equal points
696         int i = 1;
697         while (i < pointList.size())
698         {
699             if (pointList.get(i - 1).equals(pointList.get(i)))
700             {
701                 pointList.remove(i);
702             }
703             else
704             {
705                 i++;
706             }
707         }
708         return new OTSLine3D(pointList);
709     }
710 
711     /**
712      * Construct a new OTSLine3D from an array of Coordinate.
713      * @param coordinates the array of coordinates to construct this OTSLine3D from
714      * @throws OTSGeometryException when the provided points do not constitute a valid line (too few points or identical
715      *             adjacent points)
716      */
717     public OTSLine3D(final Coordinate[] coordinates) throws OTSGeometryException
718     {
719         this(coordinatesToOTSPoint3D(coordinates));
720     }
721 
722     /**
723      * Construct a new OTSLine3D from a LineString.
724      * @param lineString the lineString to construct this OTSLine3D from.
725      * @throws OTSGeometryException when the provided LineString does not constitute a valid line (too few points or identical
726      *             adjacent points)
727      */
728     public OTSLine3D(final LineString lineString) throws OTSGeometryException
729     {
730         this(lineString.getCoordinates());
731     }
732 
733     /**
734      * Construct a new OTSLine3D from a Geometry.
735      * @param geometry the geometry to construct this OTSLine3D from
736      * @throws OTSGeometryException when the provided Geometry do not constitute a valid line (too few points or identical
737      *             adjacent points)
738      */
739     public OTSLine3D(final Geometry geometry) throws OTSGeometryException
740     {
741         this(geometry.getCoordinates());
742     }
743 
744     /**
745      * Construct a new OTSLine3D from a List&lt;OTSPoint3D&gt;.
746      * @param pointList the list of points to construct this OTSLine3D from.
747      * @throws OTSGeometryException when the provided points do not constitute a valid line (too few points or identical
748      *             adjacent points)
749      */
750     public OTSLine3D(final List<OTSPoint3D> pointList) throws OTSGeometryException
751     {
752         this(pointList.toArray(new OTSPoint3D[pointList.size()]));
753     }
754 
755     /**
756      * Construct a new OTSShape (closed shape) from a Path2D.
757      * @param path the Path2D to construct this OTSLine3D from.
758      * @throws OTSGeometryException when the provided points do not constitute a valid line (too few points or identical
759      *             adjacent points)
760      */
761     public OTSLine3D(final Path2D path) throws OTSGeometryException
762     {
763         List<OTSPoint3D> pl = new ArrayList<>();
764         for (PathIterator pi = path.getPathIterator(null); !pi.isDone(); pi.next())
765         {
766             double[] p = new double[6];
767             int segType = pi.currentSegment(p);
768             if (segType == PathIterator.SEG_MOVETO || segType == PathIterator.SEG_LINETO)
769             {
770                 pl.add(new OTSPoint3D(p[0], p[1]));
771             }
772             else if (segType == PathIterator.SEG_CLOSE)
773             {
774                 if (!pl.get(0).equals(pl.get(pl.size() - 1)))
775                 {
776                     pl.add(new OTSPoint3D(pl.get(0).x, pl.get(0).y));
777                 }
778                 break;
779             }
780         }
781         init(pl.toArray(new OTSPoint3D[pl.size() - 1]));
782     }
783 
784     /**
785      * Construct a Coordinate array and fill it with the points of this OTSLine3D.
786      * @return an array of Coordinates corresponding to this OTSLine
787      */
788     public final Coordinate[] getCoordinates()
789     {
790         Coordinate[] result = new Coordinate[size()];
791         for (int i = 0; i < size(); i++)
792         {
793             result[i] = this.points[i].getCoordinate();
794         }
795         return result;
796     }
797 
798     /**
799      * Construct a LineString from this OTSLine3D.
800      * @return a LineString corresponding to this OTSLine
801      */
802     public final LineString getLineString()
803     {
804         GeometryFactory factory = new GeometryFactory();
805         Coordinate[] coordinates = getCoordinates();
806         CoordinateSequence cs = factory.getCoordinateSequenceFactory().create(coordinates);
807         return new LineString(cs, factory);
808     }
809 
810     /**
811      * Return the number of points in this OTSLine3D.
812      * @return the number of points on the line
813      */
814     public final int size()
815     {
816         return this.points.length;
817     }
818 
819     /**
820      * Return the first point of this OTSLine3D.
821      * @return the first point on the line
822      */
823     public final OTSPoint3D getFirst()
824     {
825         return this.points[0];
826     }
827 
828     /**
829      * Return the last point of this OTSLine3D.
830      * @return the last point on the line
831      */
832     public final OTSPoint3D getLast()
833     {
834         return this.points[size() - 1];
835     }
836 
837     /**
838      * Return one point of this OTSLine3D.
839      * @param i int; the index of the point to retrieve
840      * @return OTSPoint3d; the i-th point of the line
841      * @throws OTSGeometryException when i &lt; 0 or i &gt; the number of points
842      */
843     public final OTSPoint3D get(final int i) throws OTSGeometryException
844     {
845         if (i < 0 || i > size() - 1)
846         {
847             throw new OTSGeometryException("OTSLine3D.get(i=" + i + "); i<0 or i>=size(), which is " + size());
848         }
849         return this.points[i];
850     }
851 
852     /**
853      * Return the length of this OTSLine3D as a double value in SI units. (Assumes that the coordinates of the points
854      * constituting this line are expressed in meters.)
855      * @return the length of the line in SI units
856      */
857     public final synchronized double getLengthSI()
858     {
859         if (Double.isNaN(this.length))
860         {
861             this.length = 0.0;
862             for (int i = 0; i < size() - 1; i++)
863             {
864                 this.length += this.points[i].distanceSI(this.points[i + 1]);
865             }
866         }
867         return this.length;
868     }
869 
870     /**
871      * Return the length of this OTSLine3D in meters. (Assuming that the coordinates of the points constituting this line are
872      * expressed in meters.)
873      * @return the length of the line
874      */
875     public final Length getLength()
876     {
877         return new Length(getLengthSI(), LengthUnit.SI);
878     }
879 
880     /**
881      * Return an array of OTSPoint3D that represents this OTSLine3D. <strong>Do not modify the result.</strong>
882      * @return the points of this line
883      */
884     public final OTSPoint3D[] getPoints()
885     {
886         return this.points;
887     }
888 
889     /**
890      * Make the length indexed line if it does not exist yet, and cache it.
891      */
892     private void makeLengthIndexedLine()
893     {
894         if (this.lengthIndexedLine == null)
895         {
896             this.lengthIndexedLine = new double[this.points.length];
897             this.lengthIndexedLine[0] = 0.0;
898             for (int i = 1; i < this.points.length; i++)
899             {
900                 this.lengthIndexedLine[i] = this.lengthIndexedLine[i - 1] + this.points[i - 1].distanceSI(this.points[i]);
901             }
902         }
903     }
904 
905     /**
906      * Get the location at a position on the line, with its direction. Position can be below 0 or more than the line length. In
907      * that case, the position will be extrapolated in the direction of the line at its start or end.
908      * @param position the position on the line for which to calculate the point on, before, of after the line
909      * @return a directed point
910      */
911     public final DirectedPoint getLocationExtended(final Length position)
912     {
913         return getLocationExtendedSI(position.getSI());
914     }
915 
916     /**
917      * Get the location at a position on the line, with its direction. Position can be below 0 or more than the line length. In
918      * that case, the position will be extrapolated in the direction of the line at its start or end.
919      * @param positionSI the position on the line for which to calculate the point on, before, of after the line, in SI units
920      * @return a directed point
921      */
922     public final DirectedPoint getLocationExtendedSI(final double positionSI)
923     {
924         makeLengthIndexedLine();
925         if (positionSI >= 0.0 && positionSI <= getLengthSI())
926         {
927             try
928             {
929                 return getLocationSI(positionSI);
930             }
931             catch (@SuppressWarnings("unused") OTSGeometryException exception)
932             {
933                 // cannot happen
934             }
935         }
936 
937         // position before start point -- extrapolate
938         if (positionSI < 0.0)
939         {
940             double len = positionSI;
941             double fraction = len / (this.lengthIndexedLine[1] - this.lengthIndexedLine[0]);
942             OTSPoint3D p1 = this.points[0];
943             OTSPoint3D p2 = this.points[1];
944             return new DirectedPoint(p1.x + fraction * (p2.x - p1.x), p1.y + fraction * (p2.y - p1.y),
945                     p1.z + fraction * (p2.z - p1.z), 0.0, 0.0, Math.atan2(p2.y - p1.y, p2.x - p1.x));
946         }
947 
948         // position beyond end point -- extrapolate
949         int n1 = this.lengthIndexedLine.length - 1;
950         int n2 = this.lengthIndexedLine.length - 2;
951         double len = positionSI - getLengthSI();
952         double fraction = len / (this.lengthIndexedLine[n1] - this.lengthIndexedLine[n2]);
953         OTSPoint3D p1 = this.points[n2];
954         OTSPoint3D p2 = this.points[n1];
955         return new DirectedPoint(p2.x + fraction * (p2.x - p1.x), p2.y + fraction * (p2.y - p1.y),
956                 p2.z + fraction * (p2.z - p1.z), 0.0, 0.0, Math.atan2(p2.y - p1.y, p2.x - p1.x));
957     }
958 
959     /**
960      * Get the location at a fraction of the line, with its direction. Fraction should be between 0.0 and 1.0.
961      * @param fraction the fraction for which to calculate the point on the line
962      * @return a directed point
963      * @throws OTSGeometryException when fraction less than 0.0 or more than 1.0.
964      */
965     public final DirectedPoint getLocationFraction(final double fraction) throws OTSGeometryException
966     {
967         if (fraction < 0.0 || fraction > 1.0)
968         {
969             throw new OTSGeometryException("getLocationFraction for line: fraction < 0.0 or > 1.0. fraction = " + fraction);
970         }
971         return getLocationSI(fraction * getLengthSI());
972     }
973 
974     /**
975      * Get the location at a fraction of the line, with its direction. Fraction should be between 0.0 and 1.0.
976      * @param fraction the fraction for which to calculate the point on the line
977      * @param tolerance the delta from 0.0 and 1.0 that will be forgiven
978      * @return a directed point
979      * @throws OTSGeometryException when fraction less than 0.0 or more than 1.0.
980      */
981     public final DirectedPoint getLocationFraction(final double fraction, final double tolerance) throws OTSGeometryException
982     {
983         if (fraction < -tolerance || fraction > 1.0 + tolerance)
984         {
985             throw new OTSGeometryException(
986                     "getLocationFraction for line: fraction < 0.0 - tolerance or > 1.0 + tolerance; fraction = " + fraction);
987         }
988         double f = fraction < 0 ? 0.0 : fraction > 1.0 ? 1.0 : fraction;
989         return getLocationSI(f * getLengthSI());
990     }
991 
992     /**
993      * Get the location at a fraction of the line (or outside the line), with its direction.
994      * @param fraction the fraction for which to calculate the point on the line
995      * @return a directed point
996      */
997     public final DirectedPoint getLocationFractionExtended(final double fraction)
998     {
999         return getLocationExtendedSI(fraction * getLengthSI());
1000     }
1001 
1002     /**
1003      * Get the location at a position on the line, with its direction. Position should be between 0.0 and line length.
1004      * @param position the position on the line for which to calculate the point on the line
1005      * @return a directed point
1006      * @throws OTSGeometryException when position less than 0.0 or more than line length.
1007      */
1008     public final DirectedPoint getLocation(final Length position) throws OTSGeometryException
1009     {
1010         return getLocationSI(position.getSI());
1011     }
1012 
1013     /**
1014      * Binary search for a position on the line.
1015      * @param pos the position to look for.
1016      * @return the index below the position; the position is between points[index] and points[index+1]
1017      * @throws OTSGeometryException when index could not be found
1018      */
1019     private int find(final double pos) throws OTSGeometryException
1020     {
1021         if (pos == 0)
1022         {
1023             return 0;
1024         }
1025 
1026         int lo = 0;
1027         int hi = this.lengthIndexedLine.length - 1;
1028         while (lo <= hi)
1029         {
1030             if (hi == lo)
1031             {
1032                 return lo;
1033             }
1034             int mid = lo + (hi - lo) / 2;
1035             if (pos < this.lengthIndexedLine[mid])
1036             {
1037                 hi = mid - 1;
1038             }
1039             else if (pos > this.lengthIndexedLine[mid + 1])
1040             {
1041                 lo = mid + 1;
1042             }
1043             else
1044             {
1045                 return mid;
1046             }
1047         }
1048         throw new OTSGeometryException(
1049                 "Could not find position " + pos + " on line with length indexes: " + Arrays.toString(this.lengthIndexedLine));
1050     }
1051 
1052     /**
1053      * Get the location at a position on the line, with its direction. Position should be between 0.0 and line length.
1054      * @param positionSI the position on the line for which to calculate the point on the line
1055      * @return a directed point
1056      * @throws OTSGeometryException when position less than 0.0 or more than line length.
1057      */
1058     public final DirectedPoint getLocationSI(final double positionSI) throws OTSGeometryException
1059     {
1060         makeLengthIndexedLine();
1061         if (positionSI < 0.0 || positionSI > getLengthSI())
1062         {
1063             throw new OTSGeometryException("getLocationSI for line: position < 0.0 or > line length. Position = " + positionSI
1064                     + " m. Length = " + getLengthSI() + " m.");
1065         }
1066 
1067         // handle special cases: position == 0.0, or position == length
1068         if (positionSI == 0.0)
1069         {
1070             OTSPoint3D p1 = this.points[0];
1071             OTSPoint3D p2 = this.points[1];
1072             return new DirectedPoint(p1.x, p1.y, p1.z, 0.0, 0.0, Math.atan2(p2.y - p1.y, p2.x - p1.x));
1073         }
1074         if (positionSI == getLengthSI())
1075         {
1076             OTSPoint3D p1 = this.points[this.points.length - 2];
1077             OTSPoint3D p2 = this.points[this.points.length - 1];
1078             return new DirectedPoint(p2.x, p2.y, p2.z, 0.0, 0.0, Math.atan2(p2.y - p1.y, p2.x - p1.x));
1079         }
1080 
1081         // find the index of the line segment, use binary search
1082         int index = find(positionSI);
1083         double remainder = positionSI - this.lengthIndexedLine[index];
1084         double fraction = remainder / (this.lengthIndexedLine[index + 1] - this.lengthIndexedLine[index]);
1085         OTSPoint3D p1 = this.points[index];
1086         OTSPoint3D p2 = this.points[index + 1];
1087         return new DirectedPoint(p1.x + fraction * (p2.x - p1.x), p1.y + fraction * (p2.y - p1.y),
1088                 p1.z + fraction * (p2.z - p1.z), 0.0, 0.0, Math.atan2(p2.y - p1.y, p2.x - p1.x));
1089     }
1090 
1091     /**
1092      * Truncate a line at the given length (less than the length of the line, and larger than zero) and return a new line.
1093      * @param lengthSI the location where to truncate the line
1094      * @return a new OTSLine3D truncated at the exact position where line.getLength() == lengthSI
1095      * @throws OTSGeometryException when position less than 0.0 or more than line length.
1096      */
1097     public final OTSLine3D truncate(final double lengthSI) throws OTSGeometryException
1098     {
1099         makeLengthIndexedLine();
1100         if (lengthSI <= 0.0 || lengthSI > getLengthSI())
1101         {
1102             throw new OTSGeometryException("truncate for line: position <= 0.0 or > line length. Position = " + lengthSI
1103                     + " m. Length = " + getLengthSI() + " m.");
1104         }
1105 
1106         // handle special case: position == length
1107         if (lengthSI == getLengthSI())
1108         {
1109             return new OTSLine3D(getPoints());
1110         }
1111 
1112         // find the index of the line segment
1113         int index = find(lengthSI);
1114         double remainder = lengthSI - this.lengthIndexedLine[index];
1115         double fraction = remainder / (this.lengthIndexedLine[index + 1] - this.lengthIndexedLine[index]);
1116         OTSPoint3D p1 = this.points[index];
1117         OTSPoint3D p2 = this.points[index + 1];
1118         OTSPoint3D newLastPoint = new OTSPoint3D(p1.x + fraction * (p2.x - p1.x), p1.y + fraction * (p2.y - p1.y),
1119                 p1.z + fraction * (p2.z - p1.z));
1120         OTSPoint3D[] coords = new OTSPoint3D[index + 2];
1121         for (int i = 0; i <= index; i++)
1122         {
1123             coords[i] = this.points[i];
1124         }
1125         coords[index + 1] = newLastPoint;
1126         return new OTSLine3D(coords);
1127     }
1128 
1129     /*-
1130      * TODO finish this method if it is needed; remove otherwise.
1131      * Calculate the first point on this line that intersects somewhere with the provided line, or NaN if no intersection was
1132      * found.
1133      * @param line the line to test the intersection with
1134      * @return the fraction of the first intersection point
1135      *
1136     public final double firstIntersectionFraction(final OTSLine3D line)
1137     {
1138         List<Line2D.Double> segs = new ArrayList<>();
1139         for (int j = 1; j < line.getPoints().length; j++)
1140         {
1141             Line2D.Double seg =
1142                 new Line2D.Double(this.points[j - 1].x, this.points[j - 1].y, this.points[j].x, this.points[j].y);
1143             segs.add(seg);
1144     
1145         }
1146         for (int i = 1; i < this.points.length; i++)
1147         {
1148             Line2D.Double thisSeg =
1149                 new Line2D.Double(this.points[i - 1].x, this.points[i - 1].y, this.points[i].x, this.points[i].y);
1150             for (Line2D.Double seg : segs)
1151             {
1152                 if (thisSeg.intersectsLine(seg))
1153                 {
1154                     // Point2D.Double intersectionPoint = thisSeg.
1155                     
1156                 }
1157             }
1158         }
1159         return Double.NaN;
1160     }
1161      */
1162 
1163     /**
1164      * Returns the fractional position along this line of the orthogonal projection of point (x, y) on this line. If the point
1165      * is not orthogonal to the closest line segment, the nearest point is selected.
1166      * @param x x-coordinate of point to project
1167      * @param y y-coordinate of point to project
1168      * @return fractional position along this line of the orthogonal projection on this line of a point
1169      */
1170     public final double projectOrthogonal(final double x, final double y)
1171     {
1172 
1173         // prepare
1174         makeLengthIndexedLine();
1175         double minDistance = Double.POSITIVE_INFINITY;
1176         double minSegmentFraction = 0;
1177         int minSegment = -1;
1178 
1179         // code based on Line2D.ptSegDistSq(...)
1180         for (int i = 0; i < size() - 1; i++)
1181         {
1182             double dx = this.points[i + 1].x - this.points[i].x;
1183             double dy = this.points[i + 1].y - this.points[i].y;
1184             // vector relative to (x(i), y(i))
1185             double px = x - this.points[i].x;
1186             double py = y - this.points[i].y;
1187             // dot product
1188             double dot1 = px * dx + py * dy;
1189             double f;
1190             double distance;
1191             if (dot1 > 0)
1192             {
1193                 // vector relative to (x(i+1), y(i+1))
1194                 px = dx - px;
1195                 py = dy - py;
1196                 // dot product
1197                 double dot2 = px * dx + py * dy;
1198                 if (dot2 > 0)
1199                 {
1200                     // projection on line segment
1201                     double len2 = dx * dx + dy * dy;
1202                     double proj = dot2 * dot2 / len2;
1203                     f = dot1 / len2;
1204                     distance = px * px + py * py - proj;
1205                 }
1206                 else
1207                 {
1208                     // dot<=0 projection 'after' line segment
1209                     f = 1;
1210                     distance = px * px + py * py;
1211                 }
1212             }
1213             else
1214             {
1215                 // dot<=0 projection 'before' line segment
1216                 f = 0;
1217                 distance = px * px + py * py;
1218             }
1219             // check if closer than previous
1220             if (distance < minDistance)
1221             {
1222                 minDistance = distance;
1223                 minSegmentFraction = f;
1224                 minSegment = i;
1225             }
1226         }
1227 
1228         // return
1229         double segLen = this.lengthIndexedLine[minSegment + 1] - this.lengthIndexedLine[minSegment];
1230         return (this.lengthIndexedLine[minSegment] + segLen * minSegmentFraction) / getLengthSI();
1231 
1232     }
1233 
1234     /**
1235      * Returns the fractional projection of a point to a line. The projection works by taking slices in space per line segment
1236      * as shown below. A point is always projected to the nearest segment, but not necessarily to the closest point on that
1237      * segment. The slices in space are analogous to a Voronoi diagram, but for the line segments instead of points. If
1238      * fractional projection fails, the orthogonal projection is returned.<br>
1239      * <br>
1240      * The point 'A' is projected to point 'B' on the 3rd segment of line 'C-D'. The line from 'A' to 'B' extends towards point
1241      * 'E', which is the intersection of lines 'E-F' and 'E-G'. Line 'E-F' cuts the first bend of the 3rd segment (at point 'H')
1242      * in half, while the line 'E-G' cuts the second bend of the 3rd segment (at point 'I') in half.
1243      * 
1244      * <pre>
1245      *            ____________________________     G                   .
1246      * .         |                            |    .                 .
1247      *   .       |  . . . .  helper lines     |    .               .
1248      *     .     |  _.._.._  projection line  |   I.             .
1249      *       .   |____________________________|  _.'._         .       L
1250      *        F.                              _.'  .  '-.    .
1251      *          ..                       B _.'     .     '-.
1252      *           . .                    _.\        .     .  D
1253      *            .  .               _.'   :       .   .
1254      *     J       .   .          _.'      \       . .
1255      *             ..    .     _.'          :      .                M
1256      *            .  .     ..-'             \      .
1257      *           .    .    /H.               A     .
1258      *          .      .  /    .                   .
1259      *        C _________/       .                 .
1260      *        .          .         .               .
1261      *   K   .            .          .             .
1262      *      .              .           .           .
1263      *     .                .            .         .           N
1264      *    .                  .             .       .
1265      *   .                    .              .     .
1266      *  .                      .               .   .
1267      * .                        .                . .
1268      *                           .                 .E
1269      *                            .                  .
1270      *                             .                   .
1271      *                              .                    .
1272      * </pre>
1273      * 
1274      * Fractional projection may fail in three cases.
1275      * <ol>
1276      * <li>Numerical difficulties at slight bend, orthogonal projection returns the correct point.</li>
1277      * <li>Fractional projection is possible only to segments that aren't the nearest segment(s).</li>
1278      * <li>Fractional projection is possible for no segment.</li>
1279      * </ol>
1280      * In the latter two cases the projection is undefined and a orthogonal projection is returned if
1281      * {@code orthoFallback = true}, or {@code NaN} if {@code orthoFallback = false}.
1282      * @param start direction in first point
1283      * @param end direction in last point
1284      * @param x x-coordinate of point to project
1285      * @param y y-coordinate of point to project
1286      * @param fallback fallback method for when fractional projection fails
1287      * @return fractional position along this line of the fractional projection on that line of a point
1288      */
1289     public final double projectFractional(final Direction start, final Direction end, final double x, final double y,
1290             final FractionalFallback fallback)
1291     {
1292 
1293         // prepare
1294         makeLengthIndexedLine();
1295         double minDistance = Double.POSITIVE_INFINITY;
1296         double minSegmentFraction = 0;
1297         int minSegment = -1;
1298         OTSPoint3D point = new OTSPoint3D(x, y);
1299 
1300         // determine helpers (centers and directions)
1301         determineFractionalHelpers(start, end);
1302 
1303         // get distance of point to each segment
1304         double[] d = new double[this.points.length - 1];
1305         double minD = Double.POSITIVE_INFINITY;
1306         for (int i = 0; i < this.points.length - 1; i++)
1307         {
1308             d[i] = Line2D.ptSegDist(this.points[i].x, this.points[i].y, this.points[i + 1].x, this.points[i + 1].y, x, y);
1309             minD = d[i] < minD ? d[i] : minD;
1310         }
1311 
1312         // loop over segments for projection
1313         double distance;
1314         for (int i = 0; i < this.points.length - 1; i++)
1315         {
1316             // skip if not the closest segment, note that often two segments are equally close in their shared end point
1317             if (d[i] > minD + FRAC_PROJ_PRECISION)
1318             {
1319                 continue;
1320             }
1321             OTSPoint3D center = this.fractionalHelperCenters[i];
1322             OTSPoint3D p;
1323             if (center != null)
1324             {
1325                 // get intersection of line "center - (x, y)" and the segment
1326                 p = OTSPoint3D.intersectionOfLines(center, point, this.points[i], this.points[i + 1]);
1327                 if (p == null || (x < center.x + FRAC_PROJ_PRECISION && center.x + FRAC_PROJ_PRECISION < p.x)
1328                         || (x > center.x - FRAC_PROJ_PRECISION && center.x - FRAC_PROJ_PRECISION > p.x)
1329                         || (y < center.y + FRAC_PROJ_PRECISION && center.y + FRAC_PROJ_PRECISION < p.y)
1330                         || (y > center.y - FRAC_PROJ_PRECISION && center.y - FRAC_PROJ_PRECISION > p.y))
1331                 {
1332                     // projected point may not be 'beyond' segment center (i.e. center may not be between (x, y) and (p.x, p.y)
1333                     continue;
1334                 }
1335             }
1336             else
1337             {
1338                 // parallel helper lines, project along direction
1339                 OTSPoint3D offsetPoint =
1340                         new OTSPoint3D(x + this.fractionalHelperDirections[i].x, y + this.fractionalHelperDirections[i].y);
1341                 p = OTSPoint3D.intersectionOfLines(point, offsetPoint, this.points[i], this.points[i + 1]);
1342             }
1343             double segLength = this.points[i].distance(this.points[i + 1]).si + FRAC_PROJ_PRECISION;
1344             if (p == null || this.points[i].distance(p).si > segLength || this.points[i + 1].distance(p).si > segLength)
1345             {
1346                 // intersection must be on the segment
1347                 // in case of p == null, the length of the fractional helper direction falls away due to precision
1348                 continue;
1349             }
1350             // distance from (x, y) to intersection on segment
1351             double dx = x - p.x;
1352             double dy = y - p.y;
1353             distance = Math.sqrt(dx * dx + dy * dy);
1354             // distance from start of segment to point on segment
1355             if (distance < minDistance)
1356             {
1357                 dx = p.x - this.points[i].x;
1358                 dy = p.y - this.points[i].y;
1359                 double dFrac = Math.sqrt(dx * dx + dy * dy);
1360                 // fraction to point on segment
1361                 minDistance = distance;
1362                 minSegmentFraction = dFrac / (this.lengthIndexedLine[i + 1] - this.lengthIndexedLine[i]);
1363                 minSegment = i;
1364             }
1365         }
1366 
1367         // return
1368         if (minSegment == -1)
1369 
1370         {
1371             /*
1372              * If fractional projection fails (x, y) is either outside of the applicable area for fractional projection, or is
1373              * inside an area where numerical difficulties arise (i.e. far away outside of very slight bend which is considered
1374              * parallel).
1375              */
1376             // System.err.println("projectFractional failed to project " + point + " on " + this + "; using fallback approach");
1377             return fallback.getFraction(this, x, y);
1378         }
1379 
1380         double segLen = this.lengthIndexedLine[minSegment + 1] - this.lengthIndexedLine[minSegment];
1381         return (this.lengthIndexedLine[minSegment] + segLen * minSegmentFraction) /
1382 
1383                 getLengthSI();
1384 
1385     }
1386 
1387     /**
1388      * Fallback method for when fractional projection fails as the point is beyond the line or from numerical limitations.
1389      * <p>
1390      * Copyright (c) 2013-2018 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved.
1391      * <br>
1392      * BSD-style license. See <a href="http://opentrafficsim.org/node/13">OpenTrafficSim License</a>.
1393      * <p>
1394      * @version $Revision$, $LastChangedDate$, by $Author$, initial version 18 apr. 2018 <br>
1395      * @author <a href="http://www.tbm.tudelft.nl/averbraeck">Alexander Verbraeck</a>
1396      * @author <a href="http://www.tudelft.nl/pknoppers">Peter Knoppers</a>
1397      * @author <a href="http://www.transport.citg.tudelft.nl">Wouter Schakel</a>
1398      */
1399     public enum FractionalFallback
1400     {
1401         /** Orthogonal projection. */
1402         ORTHOGONAL
1403         {
1404             @Override
1405             double getFraction(final OTSLine3D line, final double x, final double y)
1406             {
1407                 return line.projectOrthogonal(x, y);
1408             }
1409         },
1410 
1411         /** Distance to nearest end point. */
1412         ENDPOINT
1413         {
1414             @Override
1415             double getFraction(final OTSLine3D line, final double x, final double y)
1416             {
1417                 OTSPoint3D point = new OTSPoint3D(x, y);
1418                 double dStart = point.distanceSI(line.getFirst());
1419                 double dEnd = point.distanceSI(line.getLast());
1420                 if (dStart < dEnd)
1421                 {
1422                     return -dStart / line.getLengthSI();
1423                 }
1424                 else
1425                 {
1426                     return (dEnd + line.getLengthSI()) / line.getLengthSI();
1427                 }
1428             }
1429         },
1430 
1431         /** NaN value. */
1432         NaN
1433         {
1434             @Override
1435             double getFraction(final OTSLine3D line, final double x, final double y)
1436             {
1437                 return Double.NaN;
1438             }
1439         };
1440 
1441         /**
1442          * Returns fraction for when fractional projection fails as the point is beyond the line or from numerical limitations.
1443          * @param line OTSLine3D; line
1444          * @param x double; x coordinate of point
1445          * @param y double; y coordinate of point
1446          * @return double; fraction for when fractional projection fails
1447          */
1448         abstract double getFraction(OTSLine3D line, double x, double y);
1449 
1450     }
1451 
1452     /**
1453      * Determines all helpers (points and/or directions) for fractional projection and stores fixed information in properties
1454      * while returning the first and last center points (.
1455      * @param start direction in first point
1456      * @param end direction in last point
1457      */
1458     private void determineFractionalHelpers(final Direction start, final Direction end)
1459     {
1460 
1461         final int n = this.points.length - 1;
1462 
1463         // calculate fixed helpers if not done yet
1464         if (this.fractionalHelperCenters == null)
1465         {
1466             this.fractionalHelperCenters = new OTSPoint3D[n];
1467             this.fractionalHelperDirections = new Point2D.Double[n];
1468             if (this.points.length > 2)
1469             {
1470                 // intersection of parallel lines of first and second segment
1471                 OTSLine3D prevOfsSeg = unitOffsetSegment(0);
1472                 OTSLine3D nextOfsSeg = unitOffsetSegment(1);
1473                 OTSPoint3D parStartPoint;
1474                 try
1475                 {
1476                     parStartPoint = OTSPoint3D.intersectionOfLines(prevOfsSeg.get(0), prevOfsSeg.get(1), nextOfsSeg.get(0),
1477                             nextOfsSeg.get(1));
1478                     if (parStartPoint == null || prevOfsSeg.get(1).distanceSI(nextOfsSeg.get(0)) < Math
1479                             .min(prevOfsSeg.get(1).distanceSI(parStartPoint), nextOfsSeg.get(0).distanceSI(parStartPoint)))
1480                     {
1481                         parStartPoint = new OTSPoint3D((prevOfsSeg.get(1).x + nextOfsSeg.get(0).x) / 2,
1482                                 (prevOfsSeg.get(1).y + nextOfsSeg.get(0).y) / 2);
1483                     }
1484                 }
1485                 catch (OTSGeometryException oge)
1486                 {
1487                     // cannot happen as only the first and second point (which are always present) are requested
1488                     throw new RuntimeException(oge);
1489                 }
1490                 // remember the intersection of the first two unit offset segments
1491                 this.firstOffsetIntersection = parStartPoint;
1492                 // loop segments
1493                 for (int i = 1; i < this.points.length - 2; i++)
1494                 {
1495                     prevOfsSeg = nextOfsSeg;
1496                     nextOfsSeg = unitOffsetSegment(i + 1);
1497                     OTSPoint3D parEndPoint;
1498                     try
1499                     {
1500                         parEndPoint = OTSPoint3D.intersectionOfLines(prevOfsSeg.get(0), prevOfsSeg.get(1), nextOfsSeg.get(0),
1501                                 nextOfsSeg.get(1));
1502                         if (parEndPoint == null || prevOfsSeg.get(1).distanceSI(nextOfsSeg.get(0)) < Math
1503                                 .min(prevOfsSeg.get(1).distanceSI(parEndPoint), nextOfsSeg.get(0).distanceSI(parEndPoint)))
1504                         {
1505                             parEndPoint = new OTSPoint3D((prevOfsSeg.get(1).x + nextOfsSeg.get(0).x) / 2,
1506                                     (prevOfsSeg.get(1).y + nextOfsSeg.get(0).y) / 2);
1507                         }
1508                     }
1509                     catch (OTSGeometryException oge)
1510                     {
1511                         // cannot happen as only the first and second point (which are always present) are requested
1512                         throw new RuntimeException(oge);
1513                     }
1514                     // center = intersections of helper lines
1515                     this.fractionalHelperCenters[i] =
1516                             OTSPoint3D.intersectionOfLines(this.points[i], parStartPoint, this.points[i + 1], parEndPoint);
1517                     if (this.fractionalHelperCenters[i] == null)
1518                     {
1519                         // parallel helper lines, parallel segments or /\/ cause parallel helper lines, use direction
1520                         this.fractionalHelperDirections[i] =
1521                                 new Point2D.Double(parStartPoint.x - this.points[i].x, parStartPoint.y - this.points[i].y);
1522                     }
1523                     parStartPoint = parEndPoint;
1524                 }
1525                 // remember the intersection of the last two unit offset segments
1526                 this.lastOffsetIntersection = parStartPoint;
1527             }
1528         }
1529 
1530         // use directions at start and end to get unit offset points to the left at a distance of 1
1531         double ang = (start == null ? Math.atan2(this.points[1].y - this.points[0].y, this.points[1].x - this.points[0].x)
1532                 : start.getInUnit(DirectionUnit.BASE)) + Math.PI / 2; // start.si + Math.PI / 2;
1533         OTSPoint3D p1 = new OTSPoint3D(this.points[0].x + Math.cos(ang), this.points[0].y + Math.sin(ang));
1534         ang = (end == null ? Math.atan2(this.points[n].y - this.points[n - 1].y, this.points[n].x - this.points[n - 1].x)
1535                 : end.getInUnit(DirectionUnit.BASE)) + Math.PI / 2; // end.si + Math.PI / 2;
1536         OTSPoint3D p2 = new OTSPoint3D(this.points[n].x + Math.cos(ang), this.points[n].y + Math.sin(ang));
1537 
1538         // calculate first and last center (i.e. intersection of unit offset segments), which depend on inputs 'start' and 'end'
1539         if (this.points.length > 2)
1540         {
1541             this.fractionalHelperCenters[0] =
1542                     OTSPoint3D.intersectionOfLines(this.points[0], p1, this.points[1], this.firstOffsetIntersection);
1543             this.fractionalHelperCenters[n - 1] =
1544                     OTSPoint3D.intersectionOfLines(this.points[n - 1], this.lastOffsetIntersection, this.points[n], p2);
1545             if (this.fractionalHelperCenters[n - 1] == null)
1546             {
1547                 // parallel helper lines, use direction for projection
1548                 this.fractionalHelperDirections[n - 1] = new Point2D.Double(p2.x - this.points[n].x, p2.y - this.points[n].y);
1549             }
1550         }
1551         else
1552         {
1553             // only a single segment
1554             this.fractionalHelperCenters[0] = OTSPoint3D.intersectionOfLines(this.points[0], p1, this.points[1], p2);
1555             this.fractionalHelperCenters[n - 1] = null;
1556         }
1557         if (this.fractionalHelperCenters[0] == null)
1558         {
1559             // parallel helper lines, use direction for projection
1560             this.fractionalHelperDirections[0] = new Point2D.Double(p1.x - this.points[0].x, p1.y - this.points[0].y);
1561         }
1562 
1563     }
1564 
1565     /**
1566      * Helper method for fractional projection which returns an offset line to the left of a segment at a distance of 1.
1567      * @param segment segment number
1568      * @return parallel line to the left of a segment at a distance of 1
1569      */
1570     private OTSLine3D unitOffsetSegment(final int segment)
1571     {
1572 
1573         // double angle = Math.atan2(this.points[segment + 1].y - this.points[segment].y,
1574         // this.points[segment + 1].x - this.points[segment].x) + Math.PI / 2;
1575         // while (angle > Math.PI)
1576         // {
1577         // angle -= Math.PI;
1578         // }
1579         // while (angle < -Math.PI)
1580         // {
1581         // angle += Math.PI;
1582         // }
1583         // OTSPoint3D from = new OTSPoint3D(this.points[segment].x + Math.cos(angle), this.points[segment].y + Math.sin(angle));
1584         // OTSPoint3D to =
1585         // new OTSPoint3D(this.points[segment + 1].x + Math.cos(angle), this.points[segment + 1].y + Math.sin(angle));
1586         // try
1587         // {
1588         // return new OTSLine3D(from, to);
1589         // }
1590         // catch (OTSGeometryException oge)
1591         // {
1592         // // cannot happen as points are from this OTSLine3D which performed the same checks and 2 points are given
1593         // throw new RuntimeException(oge);
1594         // }
1595         OTSPoint3D from = new OTSPoint3D(this.points[segment].x, this.points[segment].y);
1596         OTSPoint3D to = new OTSPoint3D(this.points[segment + 1].x, this.points[segment + 1].y);
1597         try
1598         {
1599             OTSLine3D line = new OTSLine3D(from, to);
1600             return line.offsetLine(1.0);
1601         }
1602         catch (OTSGeometryException oge)
1603         {
1604             // cannot happen as points are from this OTSLine3D which performed the same checks and 2 points are given
1605             throw new RuntimeException(oge);
1606         }
1607     }
1608 
1609     /**
1610      * Calculate the centroid of this line, and the bounds, and cache for later use. Make sure the dx, dy and dz are at least
1611      * 0.5 m wide. XXX: For an OTSLine3D, coordinate systems are not guaranteed, so 0.5 m wide has NO MEANING.
1612      */
1613     private void calcCentroidBounds()
1614     {
1615         double minX = Double.POSITIVE_INFINITY;
1616         double minY = Double.POSITIVE_INFINITY;
1617         double minZ = Double.POSITIVE_INFINITY;
1618         double maxX = Double.NEGATIVE_INFINITY;
1619         double maxY = Double.NEGATIVE_INFINITY;
1620         double maxZ = Double.NEGATIVE_INFINITY;
1621         for (OTSPoint3D p : this.points)
1622         {
1623             minX = Math.min(minX, p.x);
1624             minY = Math.min(minY, p.y);
1625             minZ = Math.min(minZ, p.z);
1626             maxX = Math.max(maxX, p.x);
1627             maxY = Math.max(maxY, p.y);
1628             maxZ = Math.max(maxZ, p.z);
1629         }
1630         this.centroid = new OTSPoint3D((maxX + minX) / 2, (maxY + minY) / 2, (maxZ + minZ) / 2);
1631         double deltaX = maxX - minX; // XXX: was Math.max(maxX - minX, 0.5);
1632         double deltaY = maxY - minY; // XXX: was Math.max(maxY - minY, 0.5);
1633         double deltaZ = maxZ - minZ; // XXX: was Math.max(maxZ - minZ, 0.5);
1634         // XXX: WRONG: this.bounds = new BoundingBox(deltaX, deltaY, deltaZ);
1635         this.bounds = new BoundingBox(new Point3d(-deltaX / 2.0, -deltaY / 2.0, -deltaZ / 2.0),
1636                 new Point3d(deltaX / 2, deltaY / 2, deltaZ / 2));
1637         this.envelope = new Envelope(minX, maxX, minY, maxY);
1638     }
1639 
1640     /**
1641      * Retrieve the centroid of this OTSLine3D.
1642      * @return OTSPoint3D; the centroid of this OTSLine3D
1643      */
1644     public final OTSPoint3D getCentroid()
1645     {
1646         if (this.centroid == null)
1647         {
1648             calcCentroidBounds();
1649         }
1650         return this.centroid;
1651     }
1652 
1653     /**
1654      * Get the bounding rectangle of this OTSLine3D.
1655      * @return Rectangle2D; the bounding rectangle of this OTSLine3D
1656      */
1657     public final Envelope getEnvelope()
1658     {
1659         if (this.envelope == null)
1660         {
1661             calcCentroidBounds();
1662         }
1663         return this.envelope;
1664     }
1665 
1666     /** {@inheritDoc} */
1667     @Override
1668     @SuppressWarnings("checkstyle:designforextension")
1669     public DirectedPoint getLocation()
1670     {
1671         if (this.centroid == null)
1672         {
1673             calcCentroidBounds();
1674         }
1675         return this.centroid.getDirectedPoint();
1676     }
1677 
1678     /** {@inheritDoc} */
1679     @Override
1680     @SuppressWarnings("checkstyle:designforextension")
1681     public Bounds getBounds()
1682     {
1683         if (this.bounds == null)
1684         {
1685             calcCentroidBounds();
1686         }
1687         return this.bounds;
1688     }
1689 
1690     /** {@inheritDoc} */
1691     @Override
1692     @SuppressWarnings("checkstyle:designforextension")
1693     public String toString()
1694     {
1695         return Arrays.toString(this.points);
1696     }
1697 
1698     /** {@inheritDoc} */
1699     @Override
1700     @SuppressWarnings("checkstyle:designforextension")
1701     public int hashCode()
1702     {
1703         final int prime = 31;
1704         int result = 1;
1705         result = prime * result + Arrays.hashCode(this.points);
1706         return result;
1707     }
1708 
1709     /** {@inheritDoc} */
1710     @Override
1711     @SuppressWarnings({ "checkstyle:designforextension", "checkstyle:needbraces" })
1712     public boolean equals(final Object obj)
1713     {
1714         if (this == obj)
1715             return true;
1716         if (obj == null)
1717             return false;
1718         if (getClass() != obj.getClass())
1719             return false;
1720         OTSLine3D other = (OTSLine3D) obj;
1721         if (!Arrays.equals(this.points, other.points))
1722             return false;
1723         return true;
1724     }
1725 
1726     /**
1727      * @return excel XY plottable output
1728      */
1729     public final String toExcel()
1730     {
1731         StringBuffer s = new StringBuffer();
1732         for (OTSPoint3D p : this.points)
1733         {
1734             s.append(p.x + "\t" + p.y + "\n");
1735         }
1736         return s.toString();
1737     }
1738 
1739     /**
1740      * @return Peter's format plot output
1741      */
1742     public final String toPlot()
1743     {
1744         StringBuffer result = new StringBuffer();
1745         for (OTSPoint3D p : this.points)
1746         {
1747             result.append(String.format(Locale.US, "%s%.3f,%.3f", 0 == result.length() ? "M" : " L", p.x, p.y));
1748         }
1749         result.append("\n");
1750         return result.toString();
1751     }
1752 
1753     /**
1754      * @param args String[]; the command line arguments (not used)
1755      * @throws OTSGeometryException in case of error
1756      */
1757     public static void main(final String[] args) throws OTSGeometryException
1758     {
1759         /*
1760          * OTSLine3D line = new OTSLine3D(new OTSPoint3D(-263.811, -86.551, 1.180), new OTSPoint3D(-262.945, -84.450, 1.180),
1761          * new OTSPoint3D(-261.966, -82.074, 1.180), new OTSPoint3D(-260.890, -79.464, 1.198), new OTSPoint3D(-259.909, -76.955,
1762          * 1.198), new OTSPoint3D(-258.911, -74.400, 1.198), new OTSPoint3D(-257.830, -71.633, 1.234));
1763          * System.out.println(line.toExcel()); double[] relativeFractions = new double[] { 0.0, 0.19827228089475762,
1764          * 0.30549496392494213, 0.5824753163948581, 0.6815307752261827, 0.7903990449840241, 0.8942375145295614, 1.0 }; double[]
1765          * offsets = new double[] { 2.9779999256134, 4.6029999256134, 3.886839156071996, 2.3664845198627207, 1.7858981925396709,
1766          * 1.472348149010167, 2.0416709053157285, 2.798692100483229 }; System.out.println(line.offsetLine(relativeFractions,
1767          * offsets).toExcel());
1768          */
1769 
1770         List<OTSPoint3D> list = new ArrayList<>();
1771         boolean laneOn933 = true;
1772         if (!laneOn933)
1773         {
1774             double x = 0;
1775             double y = 0;
1776             double dx = 0.000001;
1777             double dy = 0.05;
1778             double ddx = 1.5;
1779             for (int i = 0; i < 32; i++)
1780             {
1781                 list.add(new OTSPoint3D(x, y));
1782                 x += dx;
1783                 dx *= ddx;
1784                 y += dy;
1785             }
1786         }
1787         else
1788         {
1789             String lineStr = "@0   426333.939, 4581372.345@" + "1   426333.92109750526, 4581372.491581111@"
1790                     + "2   426333.9016207722, 4581372.6364820665@" + "3   426333.8806181711, 4581372.7797264075@"
1791                     + "4   426333.8581377007, 4581372.921337651@" + "5   426333.8342269785, 4581373.061339286@"
1792                     + "6   426333.80893323367, 4581373.199754763@" + "7   426333.78230329906, 4581373.336607476@"
1793                     + "8   426333.75438360614, 4581373.471920755@" + "9   426333.7252201801, 4581373.605717849@"
1794                     + "10  426333.69485863775, 4581373.738021923@" + "11  426333.6633441839, 4581373.868856039@"
1795                     + "12  426333.6307216125, 4581373.998243135@" + "13  426333.5970353065, 4581374.1262060385@"
1796                     + "14  426333.56232923956, 4581374.252767426@" + "15  426333.54571270826, 4581374.331102062@"
1797                     + "16  426333.53121128445, 4581374.399777128@" + "17  426333.51761287224, 4581374.46141805@"
1798                     + "18  426333.5035609495, 4581374.524905452@" + "19  426333.4885681211, 4581374.590110448@"
1799                     + "20  426333.4750534529, 4581374.648530791@" + "21  426333.4586325006, 4581374.71720738@"
1800                     + "22  426333.44573716016, 4581374.770680802@" + "23  426333.4278589452, 4581374.84273674@"
1801                     + "24  426333.41565935884, 4581374.891382747@" + "25  426333.39629928104, 4581374.966726161@"
1802                     + "26  426333.3640042249, 4581375.089202983@" + "27  426333.3310233974, 4581375.210194213@"
1803                     + "28  426333.2974053264, 4581375.329726505@" + "29  426333.26319745823, 4581375.44782613@"
1804                     + "30  426333.2284461768, 4581375.564518943@" + "31  426333.1931968143, 4581375.679830365@"
1805                     + "32  426333.15749366966, 4581375.793785359@" + "33  426333.12138002727, 4581375.9064084105@"
1806                     + "34  426333.0848981781, 4581376.017723508@" + "35  426333.0526068902, 4581376.127395174@"
1807                     + "36  426333.0222216131, 4581376.235573194@" + "37  426333.00835773064, 4581376.284013769@"
1808                     + "38  426332.9916265083, 4581376.342442355@" + "39  426332.9771780217, 4581376.392075247@"
1809                     + "40  426332.96085931134, 4581376.448026933@" + "41  426332.9448449097, 4581376.5021694945@"
1810                     + "42  426332.9299564511, 4581376.552350422@" + "43  426332.9123899684, 4581376.610862428@"
1811                     + "44  426332.87985284685, 4581376.718179138@" + "45  426332.8472718188, 4581376.824143872@"
1812                     + "46  426332.81468381727, 4581376.92878003@" + "47  426332.78212446393, 4581377.032110168@"
1813                     + "48  426332.7496281178, 4581377.134155947@" + "49  426332.71722788643, 4581377.234938197@"
1814                     + "50  426332.68495568086, 4581377.3344768565@" + "51  426332.6528422234, 4581377.432791035@"
1815                     + "52  426332.6209170973, 4581377.529898969@" + "53  426332.59026768577, 4581377.622609458@"
1816                     + "54  426332.5618311538, 4581377.708242513@" + "55  426332.5292456913, 4581377.813700842@"
1817                     + "56  426332.5007497582, 4581377.905735847@" + "57  426332.4725916431, 4581377.996633883@"
1818                     + "58  426332.4447947076, 4581378.086409748@" + "59  426332.41739884845, 4581378.175020202@"
1819                     + "60  426332.3904224847, 4581378.262486783@" + "61  426332.37513187295, 4581378.312218361@"
1820                     + "62  426332.3474726438, 4581378.402429141@" + "63  426332.3203478011, 4581378.491354613@"
1821                     + "64  426332.2937555201, 4581378.579078223@" + "65  426332.26771504263, 4581378.665610338@"
1822                     + "66  426332.24224462465, 4581378.750960108@" + "67  426332.21736132156, 4581378.835136287@"
1823                     + "68  426332.1930813682, 4581378.918146061@" + "69  426332.1694196611, 4581378.999996922@"
1824                     + "70  426332.1468078785, 4581379.079234334@" + "71  426332.1253935003, 4581379.155326921@"
1825                     + "72  426332.10456227185, 4581379.230438552@" + "73  426332.08413377195, 4581379.301777359@"
1826                     + "74  426332.0575671712, 4581379.393246921@" + "75  426332.037751917, 4581379.463051603@"
1827                     + "76  426332.01541074895, 4581379.543672992@" + "77  426331.9954696024, 4581379.617241848@"
1828                     + "78  426331.9764488572, 4581379.689794578@" + "79  426331.9581173997, 4581379.761214821@"
1829                     + "80  426331.9407607595, 4581379.831643043@" + "81  426331.92459788476, 4581379.898797621@"
1830                     + "82  426331.89349001576, 4581380.036207511@" + "83  426331.8662295119, 4581380.167554456@"
1831                     + "84  426331.84239882755, 4581380.294825263@" + "85  426331.8220095046, 4581380.41813201@"
1832                     + "86  426331.80506772455, 4581380.537631294@" + "87  426331.79158302536, 4581380.653536015@"
1833                     + "88  426331.78158027114, 4581380.766126917@" + "89  426331.7754554946, 4581380.838605414@"
1834                     + "90  426331.76793314604, 4581380.909291444@" + "91  426331.7605002508, 4581381.016285149@"
1835                     + "92  426331.75725734304, 4581381.119549306@" + "93  426331.75814653496, 4581381.219559045@"
1836                     + "94  426331.76316353114, 4581381.316908372@" + "95  426331.7723867522, 4581381.412305131@"
1837                     + "96  426331.7860053539, 4581381.506554079@" + "97  426331.80434182915, 4581381.600527881@"
1838                     + "98  426331.82733581704, 4581381.692992337@" + "99  426331.8531803791, 4581381.777938947@"
1839                     + "100 426331.884024255, 4581381.864352291@" + "101 426331.92063241004, 4581381.953224321@"
1840                     + "102 426331.96390912175, 4581382.045434713@" + "103 426331.9901409878, 4581382.095566823@"
1841                     + "104 426332.0148562894, 4581382.141714169@" + "105 426332.05172826024, 4581382.204388889@"
1842                     + "106 426332.12722889386, 4581382.323121141@" + "107 426332.1628785428, 4581382.375872464@"
1843                     + "108 426332.22007742553, 4581382.462661629@" + "109 426332.26023980865, 4581382.523784153@"
1844                     + "110 426332.3033344728, 4581382.586422447@" + "111 426332.34946240357, 4581382.650580184@"
1845                     + "112 426332.3987196004, 4581382.716255575@" + "113 426332.4511967281, 4581382.783441929@"
1846                     + "114 426332.50697922776, 4581382.852128648@" + "115 426332.56614731904, 4581382.922301916@"
1847                     + "116 426332.628776037, 4581382.993945288@" + "117 426332.6949354622, 4581383.067040358@"
1848                     + "118 426332.76469110255, 4581383.141567508@" + "119 426332.8381037568, 4581383.217505949@"
1849                     + "120 426332.91523022414, 4581383.294834619@" + "121 426332.9961233405, 4581383.373532268@"
1850                     + "122 426333.0808322224, 4581383.453577724@" + "123 426333.1693585424, 4581383.534909724@"
1851                     + "124 426333.26164044754, 4581383.61741792@" + "125 426333.3650128907, 4581383.707446191@";
1852             int fromIndex = 0;
1853             while (true)
1854             {
1855                 int at1 = lineStr.indexOf('@', fromIndex);
1856                 fromIndex = at1 + 1;
1857                 int at2 = lineStr.indexOf('@', fromIndex);
1858                 if (at2 < 0)
1859                 {
1860                     break;
1861                 }
1862                 fromIndex = at2;
1863 
1864                 String subStr = lineStr.substring(at1 + 5, at2);
1865                 int comma = subStr.indexOf(',');
1866                 double x = Double.valueOf(subStr.substring(0, comma));
1867                 double y = Double.valueOf(subStr.substring(comma + 1));
1868 
1869                 list.add(new OTSPoint3D(x, y, 0.0));
1870 
1871             }
1872         }
1873         OTSLine3D line = new OTSLine3D(list);
1874 
1875         line.projectFractional(null, null, 1.0, 0.5, FractionalFallback.NaN); // creates fractional helper points
1876 
1877         // create line of fractional helper points, give NaN points for null values
1878         OTSPoint3D[] array = line.fractionalHelperCenters;
1879         for (int i = 0; i < array.length; i++)
1880         {
1881             if (array[i] == null)
1882             {
1883                 array[i] = new OTSPoint3D(Double.NaN, Double.NaN);
1884             }
1885         }
1886         OTSLine3D helpers = new OTSLine3D(line.fractionalHelperCenters);
1887 
1888         // create Matlab compatible strings of lines
1889         StringBuilder str = new StringBuilder();
1890         str.append("line = [");
1891         String sep = "";
1892         for (OTSPoint3D p : line.getPoints())
1893         {
1894             str.append(String.format(Locale.US, "%s %.8f, %.8f", sep, p.x, p.y));
1895             sep = ",";
1896         }
1897         str.append("];\n");
1898 
1899         str.append("helpers = [");
1900         sep = "";
1901         for (OTSPoint3D p : helpers.getPoints())
1902         {
1903             str.append(String.format(Locale.US, "%s %.8f, %.8f", sep, p.x, p.y));
1904             sep = ",";
1905         }
1906         str.append("];\n");
1907 
1908         System.out.print(str);
1909     }
1910 
1911 }