View Javadoc
1   package org.opentrafficsim.road.network.lane;
2   
3   import java.awt.Color;
4   import java.io.Serializable;
5   import java.rmi.RemoteException;
6   import java.util.ArrayList;
7   import java.util.HashMap;
8   import java.util.LinkedHashMap;
9   import java.util.LinkedHashSet;
10  import java.util.List;
11  import java.util.Map;
12  import java.util.NavigableMap;
13  import java.util.Set;
14  import java.util.SortedMap;
15  import java.util.TreeMap;
16  
17  import javax.naming.NamingException;
18  
19  import org.djunits.unit.LengthUnit;
20  import org.djunits.unit.TimeUnit;
21  import org.djunits.value.vdouble.scalar.Length;
22  import org.djunits.value.vdouble.scalar.Speed;
23  import org.djunits.value.vdouble.scalar.Time;
24  import org.opentrafficsim.core.dsol.OTSSimTimeDouble;
25  import org.opentrafficsim.core.dsol.OTSSimulatorInterface;
26  import org.opentrafficsim.core.geometry.OTSGeometryException;
27  import org.opentrafficsim.core.gtu.GTUDirectionality;
28  import org.opentrafficsim.core.gtu.GTUException;
29  import org.opentrafficsim.core.gtu.GTUType;
30  import org.opentrafficsim.core.gtu.RelativePosition;
31  import org.opentrafficsim.core.gtu.plan.operational.OperationalPlan;
32  import org.opentrafficsim.core.network.LateralDirectionality;
33  import org.opentrafficsim.core.network.Link;
34  import org.opentrafficsim.core.network.LongitudinalDirectionality;
35  import org.opentrafficsim.core.network.NetworkException;
36  import org.opentrafficsim.road.gtu.lane.LaneBasedGTU;
37  import org.opentrafficsim.road.network.animation.LaneAnimation;
38  import org.opentrafficsim.road.network.lane.changing.OvertakingConditions;
39  import org.opentrafficsim.road.network.lane.object.AbstractLaneBasedObject;
40  import org.opentrafficsim.road.network.lane.object.LaneBasedObject;
41  import org.opentrafficsim.road.network.lane.object.sensor.AbstractSensor;
42  import org.opentrafficsim.road.network.lane.object.sensor.Sensor;
43  
44  import nl.tudelft.simulation.dsol.SimRuntimeException;
45  import nl.tudelft.simulation.dsol.formalisms.eventscheduling.SimEvent;
46  import nl.tudelft.simulation.event.EventType;
47  
48  /**
49   * The Lane is the CrossSectionElement of a CrossSectionLink on which GTUs can drive. The Lane stores several important
50   * properties, such as the successor lane(s), predecessor lane(s), and adjacent lane(s), all separated per GTU type. It can, for
51   * instance, be that a truck is not allowed to move into an adjacent lane, while a car is allowed to do so. Furthermore, the
52   * lane contains sensors that can be triggered by passing GTUs. The Lane class also contains methods to determine to trigger the
53   * sensors at exactly calculated and scheduled times, given the movement of the GTUs. <br>
54   * Finally, the Lane stores the GTUs on the lane, and contains several access methods to determine successor and predecessor
55   * GTUs, as well as methods to add a GTU to a lane (either at the start or in the middle when changing lanes), and remove a GTU
56   * from the lane (either at the end, or in the middle when changing onto another lane).
57   * <p>
58   * Copyright (c) 2013-2016 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
59   * BSD-style license. See <a href="http://opentrafficsim.org/docs/license.html">OpenTrafficSim License</a>.
60   * <p>
61   * $LastChangedDate: 2015-09-24 14:17:07 +0200 (Thu, 24 Sep 2015) $, @version $Revision: 1407 $, by $Author: averbraeck $,
62   * initial version Aug 19, 2014 <br>
63   * @author <a href="http://www.tbm.tudelft.nl/averbraeck">Alexander Verbraeck</a>
64   * @author <a href="http://www.tudelft.nl/pknoppers">Peter Knoppers</a>
65   */
66  public class Lane extends CrossSectionElement implements Serializable
67  {
68      /** */
69      private static final long serialVersionUID = 20150826L;
70  
71      /** Type of lane to deduce compatibility with GTU types. */
72      private final LaneType laneType;
73  
74      /**
75       * The direction in which vehicles can drive, i.e., in direction of geometry, reverse, or both. This can differ per GTU
76       * type. In an overtake lane, cars might overtake and trucks not. It might be that the lane (e.g., a street in a city) is
77       * FORWARD (from start node of the link to end node of the link) for the GTU type CAR, but BOTH for the GTU type BICYCLE
78       * (i.e., bicycles can also go in the other direction, opposite to the drawing direction of the Link). If the directionality
79       * for a GTUType is set to NONE, this means that the given GTUType cannot use the Lane. If a Directionality is set for
80       * GTUType.ALL, the getDirectionality will default to these settings when there is no specific entry for a given
81       * directionality. This means that the settings can be used additive, or restrictive. <br>
82       * In <b>additive use</b>, set the directionality for GTUType.ALL to NONE, or do not set the directionality for GTUType.ALL.
83       * Now, one by one, the allowed directionalities can be added. An example is a lane on a highway, which we only open for
84       * CAR, TRUCK and BUS. <br>
85       * In <b>restrictive use</b>, set the directionality for GTUType.ALL to BOTH, FORWARD, or BACKWARD. Override the
86       * directionality for certain GTUTypes to a more restrictive access, e.g. to NONE. An example is a lane that is open for all
87       * road users, except TRUCK.
88       */
89      private final Map<GTUType, LongitudinalDirectionality> directionalityMap;
90  
91      /**
92       * The speed limit of this lane, which can differ per GTU type. Cars might be allowed to drive 120 km/h and trucks 90 km/h.
93       * If the speed limit is the same for all GTU types, GTUType.ALL will be used. This means that the settings can be used
94       * additive, or subtractive. <br>
95       * In <b>additive use</b>, do not set the speed limit for GTUType.ALL. Now, one by one, the allowed maximum speeds for each
96       * of the GTU Types have be added. Do this when there are few GTU types or the speed limits per TU type are very different.
97       * <br>
98       * In <b>subtractive use</b>, set the speed limit for GTUType.ALL to the most common one. Override the speed limit for
99       * certain GTUTypes to a different value. An example is a lane on a highway where all vehicles, except truck (CAR, BUS,
100      * MOTORCYCLE, etc.), can drive 120 km/h, but trucks are allowed only 90 km/h. In that case, set the speed limit for
101      * GTUType.ALL to 120 km/h, and for TRUCK to 90 km/h.
102      */
103     // TODO allow for direction-dependent speed limit
104     private Map<GTUType, Speed> speedLimitMap;
105 
106     /**
107      * Sensors on the lane to trigger behavior of the GTU, sorted by longitudinal position. The triggering of sensors is done
108      * per GTU type, so different GTUs can trigger different sensors.
109      */
110     // TODO allow for direction-dependent sensors
111     private final SortedMap<Double, List<Sensor>> sensors = new TreeMap<>();
112 
113     /**
114      * Objects on the lane can be observed by the GTU. Examples are signs, speed signs, blocks, and traffic lights. They are
115      * sorted by longitudinal position.
116      */
117     // TODO allow for direction-dependent lane objects
118     private final SortedMap<Double, List<LaneBasedObject>> laneBasedObjects = new TreeMap<>();
119 
120     /** GTUs ordered by increasing longitudinal position; increasing in the direction of the center line. */
121     private final List<LaneBasedGTU> gtuList = new ArrayList<LaneBasedGTU>();
122 
123     /**
124      * Adjacent left lanes that some GTU types can change onto. Left is defined relative to the direction of the design line of
125      * the link (and the direction of the center line of the lane). In terms of offsets, 'left' lanes always have a more
126      * positive offset than the current lane. Initially null so we can calculate and cache the first time the method is called.
127      */
128     private Map<GTUType, Set<Lane>> leftNeighbors = null;
129 
130     /**
131      * Adjacent right lanes that some GTU types can change onto. Right is defined relative to the direction of the design line
132      * of the link (and the direction of the center line of the lane). In terms of offsets, 'right' lanes always have a more
133      * negative offset than the current lane. Initially null so we can calculate and cache the first time the method is called.
134      */
135     private Map<GTUType, Set<Lane>> rightNeighbors = null;
136 
137     /**
138      * Next lane(s) following this lane that some GTU types can drive from or onto. Next is defined in the direction of the
139      * design line. Initially null so we can calculate and cache the first time the method is called.
140      */
141     private Map<GTUType, Map<Lane, GTUDirectionality>> nextLanes = null;
142 
143     /**
144      * Previous lane(s) preceding this lane that some GTU types can drive from or onto. Previous is defined relative to the
145      * direction of the design line. Initially null so we can calculate and cache the first time the method is called.
146      */
147     private Map<GTUType, Map<Lane, GTUDirectionality>> prevLanes = null;
148 
149     /** The conditions for overtaking another GTU, viewed from this lane. */
150     // TODO allow for direction-dependent overtaking conditions
151     private final OvertakingConditions overtakingConditions;
152 
153     /**
154      * The <b>timed</b> event type for pub/sub indicating the addition of a GTU to the lane. <br>
155      * Payload: Object[] {String gtuId, LaneBasedGTU gtu, int count_after_addition}
156      */
157     public static final EventType GTU_ADD_EVENT = new EventType("GTU.ADD");
158 
159     /**
160      * The <b>timed</b> event type for pub/sub indicating the removal of a GTU from the lane. <br>
161      * Payload: Object[] {String gtuId, LaneBasedGTU gtu, int count_after_removal}
162      */
163     public static final EventType GTU_REMOVE_EVENT = new EventType("GTU.REMOVE");
164 
165     /**
166      * The <b>timed</b> event type for pub/sub indicating the addition of a Sensor to the lane. <br>
167      * Payload: Object[] {String sensorId, Sensor sensor}
168      */
169     public static final EventType SENSOR_ADD_EVENT = new EventType("SENSOR.ADD");
170 
171     /**
172      * The <b>timed</b> event type for pub/sub indicating the removal of a Sensor from the lane. <br>
173      * Payload: Object[] {String sensorId, Sensor sensor}
174      */
175     public static final EventType SENSOR_REMOVE_EVENT = new EventType("SENSOR.REMOVE");
176 
177     /**
178      * The event type for pub/sub indicating the addition of a LaneBasedObject to the lane. <br>
179      * Payload: Object[] {LaneBasedObject laneBasedObject}
180      */
181     public static final EventType OBJECT_ADD_EVENT = new EventType("OBJECT.ADD");
182 
183     /**
184      * The event type for pub/sub indicating the removal of a LaneBasedObject from the lane. <br>
185      * Payload: Object[] {LaneBasedObject laneBasedObject}
186      */
187     public static final EventType OBJECT_REMOVE_EVENT = new EventType("OBJECT.REMOVE");
188 
189     /**
190      * Construct a new Lane.
191      * @param parentLink CrossSectionLink; the link to which the new Lane will belong (must be constructed first)
192      * @param id String; the id of this lane within the link; should be unique within the link.
193      * @param lateralOffsetAtStart Length; the lateral offset of the design line of the new CrossSectionLink with respect to the
194      *            design line of the parent Link at the start of the parent Link
195      * @param lateralOffsetAtEnd Length; the lateral offset of the design line of the new CrossSectionLink with respect to the
196      *            design line of the parent Link at the end of the parent Link
197      * @param beginWidth Length; start width, positioned <i>symmetrically around</i> the design line
198      * @param endWidth Length; end width, positioned <i>symmetrically around</i> the design line
199      * @param laneType LaneType; the type of lane to deduce compatibility with GTU types
200      * @param directionalityMap Map&lt;GTUType, LongitudinalDirectionality&gt;; in direction of geometry, reverse, or both,
201      *            specified per GTU Type
202      * @param speedLimitMap Map&lt;GTUType, Speed&gt;; speed limit on this lane, specified per GTU Type
203      * @param overtakingConditions OvertakingConditions; the conditions for overtaking another GTU, viewed from this lane
204      * @throws OTSGeometryException when creation of the center line or contour geometry fails
205      * @throws NetworkException when id equal to null or not unique
206      */
207     @SuppressWarnings("checkstyle:parameternumber")
208     public Lane(final CrossSectionLink parentLink, final String id, final Length lateralOffsetAtStart,
209             final Length lateralOffsetAtEnd, final Length beginWidth, final Length endWidth, final LaneType laneType,
210             final Map<GTUType, LongitudinalDirectionality> directionalityMap, final Map<GTUType, Speed> speedLimitMap,
211             final OvertakingConditions overtakingConditions) throws OTSGeometryException, NetworkException
212     {
213         super(parentLink, id, lateralOffsetAtStart, lateralOffsetAtEnd, beginWidth, endWidth);
214         this.laneType = laneType;
215         this.directionalityMap = directionalityMap;
216         checkDirectionality();
217         this.speedLimitMap = speedLimitMap;
218         this.overtakingConditions = overtakingConditions;
219     }
220 
221     /**
222      * Construct a new Lane.
223      * @param parentLink CrossSectionLink; the link to which the element will belong (must be constructed first)
224      * @param id String; the id of this lane within the link; should be unique within the link.
225      * @param lateralOffsetAtStart Length; the lateral offset of the design line of the new CrossSectionLink with respect to the
226      *            design line of the parent Link at the start of the parent Link
227      * @param lateralOffsetAtEnd Length; the lateral offset of the design line of the new CrossSectionLink with respect to the
228      *            design line of the parent Link at the end of the parent Link
229      * @param beginWidth Length; start width, positioned <i>symmetrically around</i> the design line
230      * @param endWidth Length; end width, positioned <i>symmetrically around</i> the design line
231      * @param laneType LaneType; the type of lane to deduce compatibility with GTU types
232      * @param directionality LongitudinalDirectionality; in direction of geometry, reverse, or both
233      * @param speedLimit Speed; speed limit on this lane
234      * @param overtakingConditions OvertakingConditions; the conditions for overtaking another GTU, viewed from this lane
235      * @throws OTSGeometryException when creation of the center line or contour geometry fails
236      * @throws NetworkException when id equal to null or not unique
237      */
238     @SuppressWarnings("checkstyle:parameternumber")
239     public Lane(final CrossSectionLink parentLink, final String id, final Length lateralOffsetAtStart,
240             final Length lateralOffsetAtEnd, final Length beginWidth, final Length endWidth, final LaneType laneType,
241             final LongitudinalDirectionality directionality, final Speed speedLimit,
242             final OvertakingConditions overtakingConditions) throws OTSGeometryException, NetworkException
243     {
244         super(parentLink, id, lateralOffsetAtStart, lateralOffsetAtEnd, beginWidth, endWidth);
245         this.laneType = laneType;
246         this.directionalityMap = new LinkedHashMap<>(1);
247         this.directionalityMap.put(GTUType.ALL, directionality);
248         checkDirectionality();
249         this.speedLimitMap = new LinkedHashMap<>();
250         this.speedLimitMap.put(GTUType.ALL, speedLimit);
251         this.overtakingConditions = overtakingConditions;
252     }
253 
254     /**
255      * Construct a new Lane.
256      * @param parentLink CrossSectionLink; the link to which the element will belong (must be constructed first)
257      * @param id String; the id of this lane within the link; should be unique within the link.
258      * @param lateralOffset Length; the lateral offset of the design line of the new CrossSectionLink with respect to the design
259      *            line of the parent Link
260      * @param width Length; width, positioned <i>symmetrically around</i> the design line
261      * @param laneType type of lane to deduce compatibility with GTU types
262      * @param directionalityMap Map&lt;GTUType, LongitudinalDirectionality&gt;; in direction of geometry, reverse, or both,
263      *            specified per GTU Type
264      * @param speedLimitMap Map&lt;GTUType, Speed&gt;; the speed limit on this lane, specified per GTU Type
265      * @param overtakingConditions OvertakingConditions; the conditions for overtaking another GTU, viewed from this lane
266      * @throws OTSGeometryException when creation of the center line or contour geometry fails
267      * @throws NetworkException when id equal to null or not unique
268      */
269     @SuppressWarnings("checkstyle:parameternumber")
270     public Lane(final CrossSectionLink parentLink, final String id, final Length lateralOffset, final Length width,
271             final LaneType laneType, final Map<GTUType, LongitudinalDirectionality> directionalityMap,
272             final Map<GTUType, Speed> speedLimitMap, final OvertakingConditions overtakingConditions)
273             throws OTSGeometryException, NetworkException
274     {
275         super(parentLink, id, lateralOffset, width);
276         this.laneType = laneType;
277         this.directionalityMap = directionalityMap;
278         checkDirectionality();
279         this.speedLimitMap = speedLimitMap;
280         this.overtakingConditions = overtakingConditions;
281     }
282 
283     /**
284      * Construct a new Lane.
285      * @param parentLink CrossSectionLink; the link to which the element belongs (must be constructed first)
286      * @param id String; the id of this lane within the link; should be unique within the link
287      * @param lateralOffset Length; the lateral offset of the design line of the new CrossSectionLink with respect to the design
288      *            line of the parent Link
289      * @param width Length; width, positioned <i>symmetrically around</i> the design line
290      * @param laneType LaneType; the type of lane to deduce compatibility with GTU types
291      * @param directionality in direction of geometry, reverse, or both
292      * @param speedLimit Speed; the speed limit on this lane
293      * @param overtakingConditions OvertakingConditions; the conditions for overtaking another GTU, viewed from this lane
294      * @throws OTSGeometryException when creation of the center line or contour geometry fails
295      * @throws NetworkException when id equal to null or not unique
296      */
297     @SuppressWarnings("checkstyle:parameternumber")
298     public Lane(final CrossSectionLink parentLink, final String id, final Length lateralOffset, final Length width,
299             final LaneType laneType, final LongitudinalDirectionality directionality, final Speed speedLimit,
300             final OvertakingConditions overtakingConditions) throws OTSGeometryException, NetworkException
301     {
302         super(parentLink, id, lateralOffset, width);
303         this.laneType = laneType;
304         this.directionalityMap = new LinkedHashMap<>(1);
305         this.directionalityMap.put(GTUType.ALL, directionality);
306         checkDirectionality();
307         this.speedLimitMap = new LinkedHashMap<>();
308         this.speedLimitMap.put(GTUType.ALL, speedLimit);
309         this.overtakingConditions = overtakingConditions;
310     }
311 
312     /**
313      * Construct a new Lane.
314      * @param parentLink CrossSectionLink; the link to which the element belongs (must be constructed first)
315      * @param id String; the id of this lane within the link; should be unique within the link.
316      * @param crossSectionSlices List&lt;CrossSectionSlice&gt;; the offsets and widths at positions along the line, relative to
317      *            the design line of the parent link. If there is just one with and offset, there should just be one element in
318      *            the list with Length = 0. If there are more slices, the last one should be at the length of the design line.
319      *            If not, a NetworkException is thrown.
320      * @param laneType LaneType; the type of lane to deduce compatibility with GTU types
321      * @param directionalityMap Map&lt;GTUType, LongitudinalDirectionality&gt;; in direction of geometry, reverse, or both,
322      *            specified per GTU Type
323      * @param speedLimitMap Map&lt;GTUType, Speed&gt;; the speed limit on this lane, specified per GTU Type
324      * @param overtakingConditions OvertakingConditions; the conditions for overtaking another GTU, viewed from this lane
325      * @throws OTSGeometryException when creation of the center line or contour geometry fails
326      * @throws NetworkException when id equal to null or not unique
327      */
328     @SuppressWarnings("checkstyle:parameternumber")
329     public Lane(final CrossSectionLink parentLink, final String id, final List<CrossSectionSlice> crossSectionSlices,
330             final LaneType laneType, final Map<GTUType, LongitudinalDirectionality> directionalityMap,
331             final Map<GTUType, Speed> speedLimitMap, final OvertakingConditions overtakingConditions)
332             throws OTSGeometryException, NetworkException
333     {
334         super(parentLink, id, crossSectionSlices);
335         this.laneType = laneType;
336         this.directionalityMap = directionalityMap;
337         checkDirectionality();
338         this.speedLimitMap = speedLimitMap;
339         this.overtakingConditions = overtakingConditions;
340     }
341 
342     /**
343      * Construct a new Lane.
344      * @param parentLink CrossSectionLink; the link to which the element belongs (must be constructed first)
345      * @param id String; the id of this lane within the link; should be unique within the link.
346      * @param crossSectionSlices List&lt;CrossSectionSlice&gt;; the offsets and widths at positions along the line, relative to
347      *            the design line of the parent link. If there is just one with and offset, there should just be one element in
348      *            the list with Length = 0. If there are more slices, the last one should be at the length of the design line.
349      *            If not, a NetworkException is thrown.
350      * @param laneType LaneType; the type of lane to deduce compatibility with GTU types
351      * @param directionality LongitudinalDirectionality; in direction of geometry, reverse, or both
352      * @param speedLimit Speed; the speed limit on this lane
353      * @param overtakingConditions OvertakingCondition; the conditions for overtaking another GTU, viewed from this lane
354      * @throws OTSGeometryException when creation of the center line or contour geometry fails
355      * @throws NetworkException when id equal to null or not unique
356      */
357     @SuppressWarnings("checkstyle:parameternumber")
358     public Lane(final CrossSectionLink parentLink, final String id, final List<CrossSectionSlice> crossSectionSlices,
359             final LaneType laneType, final LongitudinalDirectionality directionality, final Speed speedLimit,
360             final OvertakingConditions overtakingConditions) throws OTSGeometryException, NetworkException
361     {
362         super(parentLink, id, crossSectionSlices);
363         this.laneType = laneType;
364         this.directionalityMap = new LinkedHashMap<>(1);
365         this.directionalityMap.put(GTUType.ALL, directionality);
366         checkDirectionality();
367         this.speedLimitMap = new LinkedHashMap<>();
368         this.speedLimitMap.put(GTUType.ALL, speedLimit);
369         this.overtakingConditions = overtakingConditions;
370     }
371 
372     /**
373      * Clone a Lane for a new network.
374      * @param newParentLink the new link to which the clone belongs
375      * @param newSimulator the new simulator for this network
376      * @param animation whether to (re)create animation or not
377      * @param cse the element to clone from
378      * @throws NetworkException if link already exists in the network, if name of the link is not unique, or if the start node
379      *             or the end node of the link are not registered in the network.
380      */
381     protected Lane(final CrossSectionLink newParentLink, final OTSSimulatorInterface newSimulator, final boolean animation,
382             final Lane cse) throws NetworkException
383     {
384         super(newParentLink, newSimulator, animation, cse);
385         this.laneType = cse.laneType;
386         this.directionalityMap = new HashMap<GTUType, LongitudinalDirectionality>(cse.directionalityMap);
387         this.speedLimitMap = new HashMap<GTUType, Speed>(cse.speedLimitMap);
388         this.overtakingConditions = cse.overtakingConditions;
389 
390     }
391 
392     // TODO constructor calls with this(...)
393 
394     /**
395      * Retrieve one of the sets of neighboring Lanes that is accessible for the given type of GTU. A defensive copy of the
396      * internal data structure is returned.
397      * @param direction LateralDirectionality; either LEFT or RIGHT, relative to the DESIGN LINE of the link (and the direction
398      *            of the center line of the lane). In terms of offsets, 'left' lanes always have a more positive offset than the
399      *            current lane, and 'right' lanes a more negative offset.
400      * @param gtuType GTUType; the GTU type to check the accessibility for
401      * @return Set&lt;Lane&gt;; the indicated set of neighboring Lanes
402      */
403     private Set<Lane> neighbors(final LateralDirectionality direction, final GTUType gtuType)
404     {
405         if (this.leftNeighbors == null || this.rightNeighbors == null)
406         {
407             this.leftNeighbors = new LinkedHashMap<>(1);
408             this.rightNeighbors = new LinkedHashMap<>(1);
409         }
410 
411         if (!this.leftNeighbors.containsKey(gtuType) || !this.rightNeighbors.containsKey(gtuType))
412         {
413             Set<Lane> leftSet = new LinkedHashSet<>(1);
414             Set<Lane> rightSet = new LinkedHashSet<>(1);
415             this.leftNeighbors.put(gtuType, leftSet);
416             this.rightNeighbors.put(gtuType, rightSet);
417             for (CrossSectionElement cse : this.parentLink.getCrossSectionElementList())
418             {
419                 if (cse instanceof Lane && !cse.equals(this))
420                 {
421                     Lane lane = (Lane) cse;
422                     if (laterallyAdjacentAndAccessible(lane, LateralDirectionality.LEFT, gtuType))
423                     {
424                         leftSet.add(lane);
425                     }
426                     if (laterallyAdjacentAndAccessible(lane, LateralDirectionality.RIGHT, gtuType))
427                     {
428                         rightSet.add(lane);
429                     }
430                 }
431             }
432         }
433 
434         Set<Lane> lanes = new LinkedHashSet<>();
435         if (direction.equals(LateralDirectionality.LEFT))
436         {
437             lanes.addAll(this.leftNeighbors.get(gtuType));
438         }
439         else
440         {
441             lanes.addAll(this.rightNeighbors.get(gtuType));
442         }
443         return lanes;
444     }
445 
446     /** Lateral alignment margin for longitudinally connected Lanes. */
447     static final Length ADJACENT_MARGIN = new Length(0.2, LengthUnit.METER);
448 
449     /**
450      * Determine whether another lane is adjacent to this lane (dependent on distance) and accessible (dependent on stripes) for
451      * a certain GTU type (dependent on usability of the adjacent lane for that GTU type). This method assumes that when there
452      * is NO stripe between two adjacent lanes that are accessible for the GTU type, the GTU can enter that lane. <br>
453      * @param lane Lane; the other lane to evaluate
454      * @param direction LateralDirectionality; the direction to look at, relative to the DESIGN LINE of the link. This is a very
455      *            important aspect to note: all information is stored relative to the direction of the design line, and not in a
456      *            driving direction, which can vary for lanes that can be driven in two directions (e.g. at overtaking).
457      * @param gtuType GTUType; the GTU type to check the accessibility for
458      * @return boolean; true if the other lane is adjacent to this lane and accessible for the given GTU type; false otherwise
459      */
460     private boolean laterallyAdjacentAndAccessible(final Lane lane, final LateralDirectionality direction,
461             final GTUType gtuType)
462     {
463         if (!lane.getLaneType().isCompatible(gtuType) || gtuType.equals(GTUType.ALL) || gtuType.equals(GTUType.NONE))
464         {
465             // not accessible for the given GTU type
466             return false;
467         }
468 
469         if (direction.equals(LateralDirectionality.LEFT))
470         {
471             // TODO take the cross section slices into account...
472             if (Math.abs((getDesignLineOffsetAtBegin().getSI() + getBeginWidth().getSI() / 2.0)
473                     - (lane.getDesignLineOffsetAtBegin().getSI() - lane.getBeginWidth().getSI() / 2.0)) < ADJACENT_MARGIN
474                             .getSI()
475                     && Math.abs((getDesignLineOffsetAtEnd().getSI() + getEndWidth().getSI() / 2.0)
476                             - (lane.getDesignLineOffsetAtEnd().getSI() - lane.getEndWidth().getSI() / 2.0)) < ADJACENT_MARGIN
477                                     .getSI())
478             {
479                 // look at stripes between the two lanes
480                 for (CrossSectionElement cse : this.parentLink.getCrossSectionElementList())
481                 {
482                     if (cse instanceof Stripe)
483                     {
484                         Stripe stripe = (Stripe) cse;
485                         // TODO take the cross section slices into account...
486                         if (Math.abs((getDesignLineOffsetAtBegin().getSI() + getBeginWidth().getSI() / 2.0)
487                                 - stripe.getDesignLineOffsetAtBegin().getSI()) < ADJACENT_MARGIN.getSI()
488                                 && Math.abs((getDesignLineOffsetAtEnd().getSI() + getEndWidth().getSI() / 2.0)
489                                         - stripe.getDesignLineOffsetAtEnd().getSI()) < ADJACENT_MARGIN.getSI())
490                         {
491                             if (!stripe.isPermeable(gtuType, LateralDirectionality.LEFT))
492                             {
493                                 // there is a stripe forbidding to cross to the adjacent lane
494                                 return false;
495                             }
496                         }
497                     }
498                 }
499                 // the lanes are adjacent, and there is no stripe forbidding us to enter that lane
500                 // or there is no stripe at all
501                 return true;
502             }
503         }
504 
505         else
506         // direction.equals(LateralDirectionality.RIGHT)
507         {
508             // TODO take the cross section slices into account...
509             if (Math.abs((getDesignLineOffsetAtBegin().getSI() - getBeginWidth().getSI() / 2.0)
510                     - (lane.getDesignLineOffsetAtBegin().getSI() + lane.getBeginWidth().getSI() / 2.0)) < ADJACENT_MARGIN
511                             .getSI()
512                     && Math.abs((getDesignLineOffsetAtEnd().getSI() - getEndWidth().getSI() / 2.0)
513                             - (lane.getDesignLineOffsetAtEnd().getSI() + lane.getEndWidth().getSI() / 2.0)) < ADJACENT_MARGIN
514                                     .getSI())
515             {
516                 // look at stripes between the two lanes
517                 for (CrossSectionElement cse : this.parentLink.getCrossSectionElementList())
518                 {
519                     if (cse instanceof Stripe)
520                     {
521                         Stripe stripe = (Stripe) cse;
522                         // TODO take the cross section slices into account...
523                         if (Math.abs((getDesignLineOffsetAtBegin().getSI() - getBeginWidth().getSI() / 2.0)
524                                 - stripe.getDesignLineOffsetAtBegin().getSI()) < ADJACENT_MARGIN.getSI()
525                                 && Math.abs((getDesignLineOffsetAtEnd().getSI() - getEndWidth().getSI() / 2.0)
526                                         - stripe.getDesignLineOffsetAtEnd().getSI()) < ADJACENT_MARGIN.getSI())
527                         {
528                             if (!stripe.isPermeable(gtuType, LateralDirectionality.RIGHT))
529                             {
530                                 // there is a stripe forbidding to cross to the adjacent lane
531                                 return false;
532                             }
533                         }
534                     }
535                 }
536                 // the lanes are adjacent, and there is no stripe forbidding us to enter that lane
537                 // or there is no stripe at all
538                 return true;
539             }
540         }
541 
542         // no lanes were found that are close enough laterally.
543         return false;
544     }
545 
546     /**
547      * Insert a sensor at the right place in the sensor list of this Lane.
548      * @param sensor Sensor; the sensor to add
549      * @throws NetworkException when the position of the sensor is beyond (or before) the range of this Lane
550      */
551     public final void addSensor(final Sensor sensor) throws NetworkException
552     {
553         double position = sensor.getLongitudinalPosition().si;
554         if (position < 0 || position > getLength().getSI())
555         {
556             throw new NetworkException("Illegal position for sensor " + position + " valid range is 0.." + getLength().getSI());
557         }
558         List<Sensor> sensorList = this.sensors.get(position);
559         if (null == sensorList)
560         {
561             sensorList = new ArrayList<Sensor>(1);
562             this.sensors.put(position, sensorList);
563         }
564         sensorList.add(sensor);
565         fireTimedEvent(Lane.SENSOR_ADD_EVENT, new Object[] { sensor.getId(), sensor },
566                 sensor.getSimulator().getSimulatorTime());
567     }
568 
569     /**
570      * Remove a sensor from the sensor list of this Lane.
571      * @param sensor Sensoe; the sensor to remove.
572      * @throws NetworkException when the sensor was not found on this Lane
573      */
574     public final void removeSensor(final Sensor sensor) throws NetworkException
575     {
576         fireTimedEvent(Lane.SENSOR_REMOVE_EVENT, new Object[] { sensor.getId(), sensor },
577                 sensor.getSimulator().getSimulatorTime());
578         List<Sensor> sensorList = this.sensors.get(sensor.getLongitudinalPosition().si);
579         if (null == sensorList)
580         {
581             throw new NetworkException("No sensor at " + sensor.getLongitudinalPosition().si);
582         }
583         sensorList.remove(sensor);
584         if (sensorList.size() == 0)
585         {
586             this.sensors.remove(sensor.getLongitudinalPosition().si);
587         }
588     }
589 
590     /**
591      * Retrieve the list of Sensors of this Lane in the specified distance range for the given GTUType. The sensors that are
592      * triggered by GTUTypes.ALL are added as well. The resulting list is a defensive copy.
593      * @param minimumPosition Length; the minimum distance on the Lane (inclusive)
594      * @param maximumPosition Length; the maximum distance on the Lane (inclusive)
595      * @param gtuType the GTU type to provide the sensors for
596      * @return List&lt;Sensor&gt;; list of the sensor in the specified range. This is a defensive copy.
597      */
598     public final List<Sensor> getSensors(final Length minimumPosition, final Length maximumPosition, final GTUType gtuType)
599     {
600         List<Sensor> sensorList = new ArrayList<>(1);
601         for (List<Sensor> sl : this.sensors.values())
602         {
603             for (Sensor sensor : sl)
604             {
605                 if ((sensor.getTriggeringGTUTypes().contains(gtuType) || sensor.getTriggeringGTUTypes().contains(GTUType.ALL))
606                         && sensor.getLongitudinalPosition().ge(minimumPosition)
607                         && sensor.getLongitudinalPosition().le(maximumPosition))
608                 {
609                     sensorList.add(sensor);
610                 }
611             }
612         }
613         return sensorList;
614     }
615 
616     /**
617      * Retrieve the list of Sensors of this Lane that are triggered by the given GTUType. The sensors that are triggered by
618      * GTUTypes.ALL are added as well. The resulting list is a defensive copy.
619      * @param gtuType GTUType; the GTU type to provide the sensors for
620      * @return List&lt;Sensor&gt;; list of the sensors, in ascending order for the location on the Lane
621      */
622     public final List<Sensor> getSensors(final GTUType gtuType)
623     {
624         List<Sensor> sensorList = new ArrayList<>(1);
625         for (List<Sensor> sl : this.sensors.values())
626         {
627             for (Sensor sensor : sl)
628             {
629                 if ((sensor.getTriggeringGTUTypes().contains(gtuType) || sensor.getTriggeringGTUTypes().contains(GTUType.ALL)))
630                 {
631                     sensorList.add(sensor);
632                 }
633             }
634         }
635         return sensorList;
636     }
637 
638     /**
639      * Retrieve the list of all Sensors of this Lane. The resulting list is a defensive copy.
640      * @return List&lt;Sensor&gt;; list of the sensors, in ascending order for the location on the Lane
641      */
642     public final List<Sensor> getSensors()
643     {
644         if (this.sensors == null)
645         {
646             return new ArrayList<>();
647         }
648         List<Sensor> sensorList = new ArrayList<>(1);
649         for (List<Sensor> sl : this.sensors.values())
650         {
651             for (Sensor sensor : sl)
652             {
653                 sensorList.add(sensor);
654             }
655         }
656         return sensorList;
657     }
658 
659     /**
660      * Retrieve the list of Sensors of this Lane for the given GTUType. The sensors that are triggered by GTUTypes.ALL are added
661      * as well. The resulting Map is a defensive copy.
662      * @param gtuType GTUType; the GTU type to provide the sensors for
663      * @return SortedMap&lt;Double, List&lt;Sensor&gt;&gt;; all sensors on this lane for the given GTUType as a map per distance
664      */
665     public final SortedMap<Double, List<Sensor>> getSensorMap(final GTUType gtuType)
666     {
667         SortedMap<Double, List<Sensor>> sensorMap = new TreeMap<>();
668         for (double d : this.sensors.keySet())
669         {
670             List<Sensor> sensorList = new ArrayList<>(1);
671             for (List<Sensor> sl : this.sensors.values())
672             {
673                 for (Sensor sensor : sl)
674                 {
675                     if ((sensor.getTriggeringGTUTypes().contains(gtuType)
676                             || sensor.getTriggeringGTUTypes().contains(GTUType.ALL)))
677                     {
678                         sensorList.add(sensor);
679                     }
680                 }
681             }
682             if (sensorList.size() > 0)
683             {
684                 sensorMap.put(d, sensorList);
685             }
686         }
687         return sensorMap;
688     }
689 
690     /**
691      * Schedule triggering of the sensors for a certain time step; from now until the nextEvaluationTime of the GTU.
692      * @param gtu LaneBasedGTU; the lane based GTU for which to schedule triggering of the sensors.
693      * @param referenceStartSI double; the SI distance of the GTU reference point on the lane at the current time
694      * @param referenceMoveSI double; the SI distance traveled in the next time step.
695      * @throws NetworkException when GTU not on this lane.
696      * @throws SimRuntimeException when method cannot be scheduled.
697      */
698     public final void scheduleSensorTriggers(final LaneBasedGTU gtu, final double referenceStartSI,
699             final double referenceMoveSI) throws NetworkException, SimRuntimeException
700     {
701         for (List<Sensor> sensorList : getSensorMap(gtu.getGTUType()).values())
702         {
703             for (Sensor sensor : sensorList)
704             {
705                 for (RelativePosition relativePosition : gtu.getRelativePositions().values())
706                 {
707                     // System.out.println("GTU relative position " + relativePosition + " sensor relative position " +
708                     // sensor.getPositionType());
709                     if (sensor.getPositionType().equals(relativePosition.getType())
710                             && referenceStartSI + relativePosition.getDx().getSI() <= sensor.getLongitudinalPosition().si
711                             && referenceStartSI + referenceMoveSI
712                                     + relativePosition.getDx().getSI() > sensor.getLongitudinalPosition().si)
713                     {
714                         // the exact time of triggering is based on the distance between the current position of the
715                         // relative position on the GTU and the location of the sensor.
716                         // TODO make sure triggering is done right when driving in DIR_MINUS direction
717                         double d = sensor.getLongitudinalPosition().si - referenceStartSI - relativePosition.getDx().getSI();
718                         if (d < 0)
719                         {
720                             throw new NetworkException("scheduleTriggers for gtu: " + gtu + ", d<0 d=" + d);
721                         }
722 
723                         OperationalPlan oPlan = gtu.getOperationalPlan();
724                         Time triggerTime = oPlan.timeAtDistance(new Length(d, LengthUnit.METER));
725                         if (triggerTime.gt(oPlan.getEndTime()))
726                         {
727                             System.err.println("Time=" + gtu.getSimulator().getSimulatorTime().getTime().getSI()
728                                     + " - Scheduling trigger at " + triggerTime.getSI() + "s. > " + oPlan.getEndTime().getSI()
729                                     + "s. (nextEvalTime) for sensor " + sensor + " , gtu " + gtu);
730                             System.err.println("  v=" + gtu.getSpeed() + ", a=" + gtu.getAcceleration() + ", lane=" + toString()
731                                     + ", refStartSI=" + referenceStartSI + ", moveSI=" + referenceMoveSI);
732                             triggerTime =
733                                     new Time(oPlan.getEndTime().getSI() - Math.ulp(oPlan.getEndTime().getSI()), TimeUnit.SI);
734                             // gtu.timeAtDistance(new Length(-d, METER));
735                             // System.exit(-1);
736                         }
737                         // System.out.println("Scheduling a trigger for relativePosition " + relativePosition);
738                         // System.out.println("Time=" + gtu.getSimulator().getSimulatorTime().toString()
739                         // + " - Scheduling trigger at " + triggerTime + " for sensor " + sensor + " , gtu " + gtu);
740                         SimEvent<OTSSimTimeDouble> event = new SimEvent<OTSSimTimeDouble>(new OTSSimTimeDouble(triggerTime),
741                                 this, sensor, "trigger", new Object[] { gtu });
742                         gtu.getSimulator().scheduleEvent(event);
743                         gtu.addTrigger(this, event);
744                     }
745                 }
746             }
747         }
748     }
749 
750     /**
751      * Insert a laneBasedObject at the right place in the laneBasedObject list of this Lane.
752      * @param laneBasedObject LaneBasedObject; the laneBasedObject to add
753      * @throws NetworkException when the position of the laneBasedObject is beyond (or before) the range of this Lane
754      */
755     public final void addLaneBasedObject(final LaneBasedObject laneBasedObject) throws NetworkException
756     {
757         double position = laneBasedObject.getLongitudinalPosition().si;
758         if (position < 0 || position > getLength().getSI())
759         {
760             throw new NetworkException(
761                     "Illegal position for laneBasedObject " + position + " valid range is 0.." + getLength().getSI());
762         }
763         List<LaneBasedObject> laneBasedObjectList = this.laneBasedObjects.get(position);
764         if (null == laneBasedObjectList)
765         {
766             laneBasedObjectList = new ArrayList<LaneBasedObject>(1);
767             this.laneBasedObjects.put(position, laneBasedObjectList);
768         }
769         laneBasedObjectList.add(laneBasedObject);
770         fireEvent(Lane.OBJECT_ADD_EVENT, new Object[] { laneBasedObject });
771     }
772 
773     /**
774      * Remove a laneBasedObject from the laneBasedObject list of this Lane.
775      * @param laneBasedObject Sensoe; the laneBasedObject to remove.
776      * @throws NetworkException when the laneBasedObject was not found on this Lane
777      */
778     public final void removeLaneBasedObject(final LaneBasedObject laneBasedObject) throws NetworkException
779     {
780         fireEvent(Lane.OBJECT_REMOVE_EVENT, new Object[] { laneBasedObject });
781         List<LaneBasedObject> laneBasedObjectList =
782                 this.laneBasedObjects.get(laneBasedObject.getLongitudinalPosition().getSI());
783         if (null == laneBasedObjectList)
784         {
785             throw new NetworkException("No laneBasedObject at " + laneBasedObject.getLongitudinalPosition().si);
786         }
787         laneBasedObjectList.remove(laneBasedObject);
788         if (laneBasedObjectList.isEmpty())
789         {
790             this.laneBasedObjects.remove(laneBasedObject.getLongitudinalPosition().doubleValue());
791         }
792     }
793 
794     /**
795      * Retrieve the list of LaneBasedObjects of this Lane in the specified distance range. The resulting list is a defensive
796      * copy.
797      * @param minimumPosition Length; the minimum distance on the Lane (inclusive)
798      * @param maximumPosition Length; the maximum distance on the Lane (inclusive)
799      * @return List&lt;LaneBasedObject&gt;; list of the laneBasedObject in the specified range. This is a defensive copy.
800      */
801     public final List<LaneBasedObject> getLaneBasedObjects(final Length minimumPosition, final Length maximumPosition)
802     {
803         List<LaneBasedObject> laneBasedObjectList = new ArrayList<>(1);
804         for (List<LaneBasedObject> lbol : this.laneBasedObjects.values())
805         {
806             for (LaneBasedObject lbo : lbol)
807             {
808                 if (lbo.getLongitudinalPosition().ge(minimumPosition) && lbo.getLongitudinalPosition().le(maximumPosition))
809                 {
810                     laneBasedObjectList.add(lbo);
811                 }
812             }
813         }
814         return laneBasedObjectList;
815     }
816 
817     /**
818      * Retrieve the list of all LaneBasedObjects of this Lane. The resulting list is a defensive copy.
819      * @return List&lt;LaneBasedObject&gt;; list of the laneBasedObjects, in ascending order for the location on the Lane
820      */
821     public final List<LaneBasedObject> getLaneBasedObjects()
822     {
823         if (this.laneBasedObjects == null)
824         {
825             return new ArrayList<>();
826         }
827         List<LaneBasedObject> laneBasedObjectList = new ArrayList<>(1);
828         for (List<LaneBasedObject> lbol : this.laneBasedObjects.values())
829         {
830             for (LaneBasedObject lbo : lbol)
831             {
832                 laneBasedObjectList.add(lbo);
833             }
834         }
835         return laneBasedObjectList;
836     }
837 
838     /**
839      * Retrieve the list of LaneBasedObjects of this Lane. The resulting Map is a defensive copy.
840      * @return SortedMap&lt;Double, List&lt;LaneBasedObject&gt;&gt;; all laneBasedObjects on this lane
841      */
842     public final SortedMap<Double, List<LaneBasedObject>> getLaneBasedObjectMap()
843     {
844         SortedMap<Double, List<LaneBasedObject>> laneBasedObjectMap = new TreeMap<>();
845         for (double d : this.laneBasedObjects.keySet())
846         {
847             List<LaneBasedObject> laneBasedObjectList = new ArrayList<>(1);
848             for (LaneBasedObject lbo : this.laneBasedObjects.get(d))
849             {
850                 laneBasedObjectList.add(lbo);
851             }
852             laneBasedObjectMap.put(d, laneBasedObjectList);
853         }
854         return laneBasedObjectMap;
855     }
856 
857     /**
858      * Transform a fraction on the lane to a relative length (can be less than zero or larger than the lane length).
859      * @param fraction double; fraction relative to the lane length.
860      * @return Length; the longitudinal length corresponding to the fraction.
861      */
862     public final Length position(final double fraction)
863     {
864         if (this.length.getUnit().isBaseSIUnit())
865         {
866             return new Length(this.length.si * fraction, LengthUnit.SI);
867         }
868         return new Length(this.length.getInUnit() * fraction, this.length.getUnit());
869     }
870 
871     /**
872      * Transform a fraction on the lane to a relative length in SI units (can be less than zero or larger than the lane length).
873      * @param fraction double; fraction relative to the lane length.
874      * @return double; length corresponding to the fraction, in SI units.
875      */
876     public final double positionSI(final double fraction)
877     {
878         return this.length.si * fraction;
879     }
880 
881     /**
882      * Transform a position on the lane (can be less than zero or larger than the lane length) to a fraction.
883      * @param position Length; relative length on the lane (may be less than zero or larger than the lane length).
884      * @return fraction double; fraction relative to the lane length.
885      */
886     public final double fraction(final Length position)
887     {
888         return position.si / this.length.si;
889     }
890 
891     /**
892      * Transform a position on the lane in SI units (can be less than zero or larger than the lane length) to a fraction.
893      * @param positionSI double; relative length on the lane in SI units (may be less than zero or larger than the lane length).
894      * @return double; fraction relative to the lane length.
895      */
896     public final double fractionSI(final double positionSI)
897     {
898         return positionSI / this.length.si;
899     }
900 
901     /**
902      * Add a LaneBasedGTU to the list of this Lane.
903      * @param gtu LaneBasedGTU; the GTU to add
904      * @param fractionalPosition double; the fractional position that the newly added GTU will have on this Lane
905      * @return int; the rank that the newly added GTU has on this Lane (should be 0, except when the GTU enters this Lane due to
906      *         a lane change operation)
907      * @throws GTUException when the fractionalPosition is outside the range 0..1, or the GTU is already registered on this Lane
908      */
909     public final int addGTU(final LaneBasedGTU gtu, final double fractionalPosition) throws GTUException
910     {
911         // figure out the rank for the new GTU
912         int index;
913         for (index = 0; index < this.gtuList.size(); index++)
914         {
915             LaneBasedGTU otherGTU = this.gtuList.get(index);
916             if (gtu == otherGTU)
917             {
918                 throw new GTUException(gtu + " already registered on Lane " + this + " [registered lanes: "
919                         + gtu.positions(gtu.getFront()).keySet() + "] locations: " + gtu.positions(gtu.getFront()).values()
920                         + " time: " + gtu.getSimulator().getSimulatorTime().getTime());
921             }
922             if (otherGTU.fractionalPosition(this, otherGTU.getFront()) >= fractionalPosition)
923             {
924                 break;
925             }
926         }
927         this.gtuList.add(index, gtu);
928         fireTimedEvent(Lane.GTU_ADD_EVENT, new Object[] { gtu.getId(), gtu, this.gtuList.size() },
929                 gtu.getSimulator().getSimulatorTime());
930         getParentLink().addGTU(gtu);
931         return index;
932     }
933 
934     /**
935      * Add a LaneBasedGTU to the list of this Lane.
936      * @param gtu LaneBasedGTU; the GTU to add
937      * @param longitudinalPosition Length; the longitudinal position that the newly added GTU will have on this Lane
938      * @return int; the rank that the newly added GTU has on this Lane (should be 0, except when the GTU enters this Lane due to
939      *         a lane change operation)
940      * @throws GTUException when longitudinalPosition is negative or exceeds the length of this Lane
941      */
942     public final int addGTU(final LaneBasedGTU gtu, final Length longitudinalPosition) throws GTUException
943     {
944         return addGTU(gtu, longitudinalPosition.getSI() / getLength().getSI());
945     }
946 
947     /**
948      * Remove a GTU from the GTU list of this lane.
949      * @param gtu the GTU to remove.
950      * @param removeFromParentLink when the GTU leaves the last lane of the parentLink of this Lane
951      */
952     public final void removeGTU(final LaneBasedGTU gtu, final boolean removeFromParentLink)
953     {
954         this.gtuList.remove(gtu);
955         fireTimedEvent(Lane.GTU_REMOVE_EVENT, new Object[] { gtu.getId(), gtu, this.gtuList.size() },
956                 gtu.getSimulator().getSimulatorTime());
957         if (removeFromParentLink)
958         {
959             this.parentLink.removeGTU(gtu);
960         }
961     }
962 
963     /**
964      * Get the first GTU where the relativePosition is in front of a certain position on the lane, in a driving direction on
965      * this lane, compared to the DESIGN LINE.
966      * @param position Length; the position after which the relative position of a GTU will be searched.
967      * @param direction GTUDirectionality; whether we are looking in the the center line direction or against the center line
968      *            direction.
969      * @param relativePosition RelativePosition.TYPE; the relative position we want to compare against
970      * @param when Time; the time for which to evaluate the positions.
971      * @return LaneBasedGTU; the first GTU after a position on this lane in the given direction, or null if no GTU could be
972      *         found.
973      * @throws GTUException when there is a problem with the position of the GTUs on the lane.
974      */
975     public final LaneBasedGTU getGtuAhead(final Length position, final GTUDirectionality direction,
976             final RelativePosition.TYPE relativePosition, final Time when) throws GTUException
977     {
978         if (direction.equals(GTUDirectionality.DIR_PLUS))
979         {
980             for (LaneBasedGTU gtu : this.gtuList)
981             {
982                 if (gtu.position(this, gtu.getRelativePositions().get(relativePosition), when).gt(position))
983                 {
984                     return gtu;
985                 }
986             }
987         }
988         else
989         {
990             for (int i = this.gtuList.size() - 1; i >= 0; i--)
991             {
992                 LaneBasedGTU gtu = this.gtuList.get(i);
993                 if (gtu.position(this, gtu.getRelativePositions().get(relativePosition), when).lt(position))
994                 {
995                     return gtu;
996                 }
997             }
998         }
999         return null;
1000     }
1001 
1002     /**
1003      * Get the first object where the relativePosition is in front of a certain position on the lane, in a driving direction on
1004      * this lane, compared to the DESIGN LINE. Perception should iterate over results from this method to see what is most
1005      * limiting.
1006      * @param position Length; the position after which the relative position of an object will be searched.
1007      * @param direction GTUDirectionality; whether we are looking in the the center line direction or against the center line
1008      *            direction.
1009      * @return Set&lt;LaneBasedObject&gt;; the first object(s) after a position on this lane in the given direction, or null if
1010      *         no object could be found.
1011      */
1012     public final List<LaneBasedObject> getObjectAhead(final Length position, final GTUDirectionality direction)
1013     {
1014         if (direction.equals(GTUDirectionality.DIR_PLUS))
1015         {
1016             for (double distance : this.laneBasedObjects.keySet())
1017             {
1018                 if (distance > position.si)
1019                 {
1020                     return new ArrayList<>(this.laneBasedObjects.get(distance));
1021                 }
1022             }
1023         }
1024         else
1025         {
1026             NavigableMap<Double, List<LaneBasedObject>> reverseLBO =
1027                     (NavigableMap<Double, List<LaneBasedObject>>) this.laneBasedObjects;
1028             for (double distance : reverseLBO.descendingKeySet())
1029             {
1030                 if (distance < position.si)
1031                 {
1032                     return new ArrayList<>(this.laneBasedObjects.get(distance));
1033                 }
1034             }
1035         }
1036         return null;
1037     }
1038 
1039     /**
1040      * Get the first GTU where the relativePosition is behind a certain position on the lane, in a driving direction on this
1041      * lane, compared to the DESIGN LINE.
1042      * @param position Length; the position before which the relative position of a GTU will be searched.
1043      * @param direction GTUDirectionality; whether we are looking in the the center line direction or against the center line
1044      *            direction.
1045      * @param relativePosition RelativePosition.TYPE; the relative position of the GTU we are looking for.
1046      * @param when Time; the time for which to evaluate the positions.
1047      * @return LaneBasedGTU; the first GTU before a position on this lane in the given direction, or null if no GTU could be
1048      *         found.
1049      * @throws GTUException when there is a problem with the position of the GTUs on the lane.
1050      */
1051     public final LaneBasedGTU getGtuBehind(final Length position, final GTUDirectionality direction,
1052             final RelativePosition.TYPE relativePosition, final Time when) throws GTUException
1053     {
1054         if (direction.equals(GTUDirectionality.DIR_PLUS))
1055         {
1056             return getGtuAhead(position, GTUDirectionality.DIR_MINUS, relativePosition, when);
1057         }
1058         return getGtuAhead(position, direction, relativePosition, when);
1059     }
1060 
1061     /*
1062      * TODO only center position? Or also width? What is a good cutoff? Base on average width of the GTU type that can drive on
1063      * this Lane? E.g., for a Tram or Train, a 5 cm deviation is a problem; for a Car or a Bicycle, more deviation is
1064      * acceptable.
1065      */
1066     /** Lateral alignment margin for longitudinally connected Lanes. */
1067     public static final Length MARGIN = new Length(0.5, LengthUnit.METER);
1068 
1069     /**
1070      * NextLanes returns the successor lane(s) in the design line direction, if any exist.<br>
1071      * The next lane(s) are cached, as it is too expensive to make the calculation every time. There are several possibilities:
1072      * (1) Returning an empty set when there is no successor lane in the design direction or there is no longitudinal transfer
1073      * possible to a successor lane in the design direction. (2) Returning a set with just one lane if the lateral position of
1074      * the successor lane matches the lateral position of this lane (based on an overlap of the lateral positions of the two
1075      * joining lanes of more than a certain percentage). (3) Multiple lanes in case the Node where the underlying Link for this
1076      * Lane has multiple "outgoing" Links, and there are multiple lanes that match the lateral position of this lane.<br>
1077      * The next lanes can differ per GTU type. For instance, a lane where cars and buses are allowed can have a next lane where
1078      * only buses are allowed, forcing the cars to leave that lane.
1079      * @param gtuType the GTU type for which we return the next lanes.
1080      * @return set of Lanes following this lane for the given GTU type.
1081      */
1082     public final Map<Lane, GTUDirectionality> nextLanes(final GTUType gtuType)
1083     {
1084         if (this.nextLanes == null)
1085         {
1086             this.nextLanes = new LinkedHashMap<>(1);
1087         }
1088         if (!this.nextLanes.containsKey(gtuType))
1089         {
1090             Map<Lane, GTUDirectionality> laneMap = new LinkedHashMap<>(1);
1091             this.nextLanes.put(gtuType, laneMap);
1092             // Construct (and cache) the result.
1093             for (Link link : getParentLink().getEndNode().getLinks())
1094             {
1095                 if (!(link.equals(this.getParentLink())) && link instanceof CrossSectionLink)
1096                 {
1097                     for (CrossSectionElement cse : ((CrossSectionLink) link).getCrossSectionElementList())
1098                     {
1099                         if (cse instanceof Lane)
1100                         {
1101                             Lane lane = (Lane) cse;
1102                             Length df = this.getCenterLine().getLast().distance(lane.getCenterLine().getFirst());
1103                             Length dl = this.getCenterLine().getLast().distance(lane.getCenterLine().getLast());
1104                             // this, parentLink ---> O ---> lane, link
1105                             if (df.lt(MARGIN) && df.lt(dl) && link.getStartNode().equals(getParentLink().getEndNode()))
1106                             {
1107                                 // does the GTU move in the design line direction or against it?
1108                                 // TODO And is it aligned with its next lane?
1109                                 if (lane.getDirectionality(gtuType).isForwardOrBoth())
1110                                 {
1111                                     laneMap.put(lane, GTUDirectionality.DIR_PLUS);
1112                                 }
1113                                 else if (lane.getDirectionality(gtuType).isBackwardOrBoth())
1114                                 {
1115                                     laneMap.put(lane, GTUDirectionality.DIR_MINUS);
1116                                 }
1117                             }
1118                             // this, parentLink ---> O <--- lane, link
1119                             else if (dl.lt(MARGIN) && dl.lt(df) && link.getEndNode().equals(getParentLink().getEndNode()))
1120                             {
1121                                 // does the GTU move in the design line direction or against it?
1122                                 // TODO And is it aligned with its next lane?
1123                                 if (lane.getDirectionality(gtuType).isForwardOrBoth())
1124                                 {
1125                                     laneMap.put(lane, GTUDirectionality.DIR_PLUS);
1126                                 }
1127                                 else if (lane.getDirectionality(gtuType).isBackwardOrBoth())
1128                                 {
1129                                     laneMap.put(lane, GTUDirectionality.DIR_MINUS);
1130                                 }
1131                             }
1132                         }
1133                     }
1134                 }
1135             }
1136         }
1137         return this.nextLanes.get(gtuType);
1138     }
1139 
1140     /**
1141      * PrevLanes returns the predecessor lane(s) relative to the design line direction, if any exist.<br>
1142      * The previous lane(s) are cached, as it is too expensive to make the calculation every time. There are several
1143      * possibilities: (1) Returning an empty set when there is no predecessor lane relative to the design direction or there is
1144      * no longitudinal transfer possible to a predecessor lane relative to the design direction. (2) Returning a set with just
1145      * one lane if the lateral position of the predecessor lane matches the lateral position of this lane (based on an overlap
1146      * of the lateral positions of the two joining lanes of more than a certain percentage). (3) Multiple lanes in case the Node
1147      * where the underlying Link for this Lane has multiple "incoming" Links, and there are multiple lanes that match the
1148      * lateral position of this lane.<br>
1149      * The previous lanes can differ per GTU type. For instance, a lane where cars and buses are allowed can be preceded by a
1150      * lane where only buses are allowed.
1151      * @param gtuType the GTU type for which we return the next lanes.
1152      * @return set of Lanes following this lane for the given GTU type.
1153      */
1154     public final Map<Lane, GTUDirectionality> prevLanes(final GTUType gtuType)
1155     {
1156         if (this.prevLanes == null)
1157         {
1158             this.prevLanes = new LinkedHashMap<>(1);
1159         }
1160         if (!this.prevLanes.containsKey(gtuType))
1161         {
1162             Map<Lane, GTUDirectionality> laneMap = new LinkedHashMap<>(1);
1163             this.prevLanes.put(gtuType, laneMap);
1164             // Construct (and cache) the result.
1165             for (Link link : getParentLink().getStartNode().getLinks())
1166             {
1167                 if (!(link.equals(this.getParentLink())) && link instanceof CrossSectionLink)
1168                 {
1169                     for (CrossSectionElement cse : ((CrossSectionLink) link).getCrossSectionElementList())
1170                     {
1171                         if (cse instanceof Lane)
1172                         {
1173                             Lane lane = (Lane) cse;
1174                             Length df = this.getCenterLine().getFirst().distance(lane.getCenterLine().getFirst());
1175                             Length dl = this.getCenterLine().getFirst().distance(lane.getCenterLine().getLast());
1176                             // this, parentLink <--- O ---> lane, link
1177                             if (df.lt(MARGIN) && df.lt(dl) && link.getStartNode().equals(getParentLink().getStartNode()))
1178                             {
1179                                 // does the GTU move in the design line direction or against it?
1180                                 // TODO And is it aligned with its next lane?
1181                                 if (lane.getDirectionality(gtuType).isForwardOrBoth())
1182                                 {
1183                                     laneMap.put(lane, GTUDirectionality.DIR_PLUS);
1184                                 }
1185                                 else if (lane.getDirectionality(gtuType).isBackwardOrBoth())
1186                                 {
1187                                     laneMap.put(lane, GTUDirectionality.DIR_MINUS);
1188                                 }
1189                             }
1190                             // this, parentLink <--- O <--- lane, link
1191                             else if (dl.lt(MARGIN) && dl.lt(df) && link.getEndNode().equals(getParentLink().getStartNode()))
1192                             {
1193                                 // does the GTU move in the design line direction or against it?
1194                                 // TODO And is it aligned with its next lane?
1195                                 if (lane.getDirectionality(gtuType).isForwardOrBoth())
1196                                 {
1197                                     laneMap.put(lane, GTUDirectionality.DIR_PLUS);
1198                                 }
1199                                 else if (lane.getDirectionality(gtuType).isBackwardOrBoth())
1200                                 {
1201                                     laneMap.put(lane, GTUDirectionality.DIR_MINUS);
1202                                 }
1203                             }
1204                         }
1205                     }
1206                 }
1207             }
1208         }
1209         return this.prevLanes.get(gtuType);
1210     }
1211 
1212     /**
1213      * Determine the set of lanes to the left or to the right of this lane, which are accessible from this lane, or an empty set
1214      * if no lane could be found. The method takes the LongitidinalDirectionality of the lane into account. In other words, if
1215      * we drive in the DIR_PLUS direction and look for a lane on the LEFT, and there is a lane but the Directionality of that
1216      * lane is not DIR_PLUS or DIR_BOTH, it will not be included.<br>
1217      * A lane is called adjacent to another lane if the lateral edges are not more than a delta distance apart. This means that
1218      * a lane that <i>overlaps</i> with another lane is <b>not</b> returned as an adjacent lane. <br>
1219      * <b>Note:</b> LEFT and RIGHT are seen from the direction of the GTU, in its forward driving direction. <br>
1220      * @param lateralDirection LEFT or RIGHT.
1221      * @param gtuType the type of GTU for which to return the adjacent lanes.
1222      * @return the set of lanes that are accessible, or null if there is no lane that is accessible with a matching driving
1223      *         direction.
1224      */
1225     public final Set<Lane> accessibleAdjacentLanes(final LateralDirectionality lateralDirection, final GTUType gtuType)
1226     {
1227         Set<Lane> candidates = new LinkedHashSet<>(1);
1228         LateralDirectionality dir = this.getDirectionality(gtuType).isForwardOrBoth() ? lateralDirection
1229                 : lateralDirection.isLeft() ? LateralDirectionality.RIGHT : LateralDirectionality.LEFT;
1230         for (Lane lane : neighbors(dir, gtuType))
1231         {
1232             if (lane.getDirectionality(gtuType).equals(LongitudinalDirectionality.DIR_BOTH)
1233                     || lane.getDirectionality(gtuType).equals(this.getDirectionality(gtuType)))
1234             {
1235                 candidates.add(lane);
1236             }
1237         }
1238         return candidates;
1239     }
1240 
1241     /**
1242      * Get the speed limit of this lane, which can differ per GTU type. E.g., cars might be allowed to drive 120 km/h and trucks
1243      * 90 km/h.
1244      * @param gtuType the GTU type to provide the speed limit for
1245      * @return the speedLimit.
1246      * @throws NetworkException on network inconsistency
1247      */
1248     public final Speed getSpeedLimit(final GTUType gtuType) throws NetworkException
1249     {
1250         if (this.speedLimitMap.containsKey(gtuType))
1251         {
1252             return this.speedLimitMap.get(gtuType);
1253         }
1254         if (this.speedLimitMap.containsKey(GTUType.ALL))
1255         {
1256             return this.speedLimitMap.get(GTUType.ALL);
1257         }
1258         throw new NetworkException("No speed limit set for GTUType " + gtuType + " on lane " + toString());
1259     }
1260 
1261     /**
1262      * Set the speed limit of this lane, which can differ per GTU type. Cars might be allowed to drive 120 km/h and trucks 90
1263      * km/h. If the speed limit is the same for all GTU types, GTUType.ALL will be used. This means that the settings can be
1264      * used additive, or subtractive. <br>
1265      * In <b>additive use</b>, do not set the speed limit for GTUType.ALL. Now, one by one, the allowed maximum speeds for each
1266      * of the GTU Types have be added. Do this when there are few GTU types or the speed limits per TU type are very different.
1267      * <br>
1268      * In <b>subtractive use</b>, set the speed limit for GTUType.ALL to the most common one. Override the speed limit for
1269      * certain GTUTypes to a different value. An example is a lane on a highway where all vehicles, except truck (CAR, BUS,
1270      * MOTORCYCLE, etc.), can drive 120 km/h, but trucks are allowed only 90 km/h. In that case, set the speed limit for
1271      * GTUType.ALL to 120 km/h, and for TRUCK to 90 km/h.
1272      * @param gtuType the GTU type to provide the speed limit for
1273      * @param speedLimit the speed limit for this gtu type
1274      */
1275     public final void setSpeedLimit(final GTUType gtuType, final Speed speedLimit)
1276     {
1277         this.speedLimitMap.put(gtuType, speedLimit);
1278     }
1279 
1280     /**
1281      * Remove the set speed limit for a GTUType. If the speed limit for GTUType.ALL will be removed, there will not be a
1282      * 'default' speed limit anymore. If the speed limit for a certain GTUType is removed, its speed limit will default to the
1283      * speed limit of GTUType.ALL. <br>
1284      * <b>Note</b>: if no speed limit is known for a GTUType, getSpeedLimit will throw a NetworkException when the speed limit
1285      * is retrieved for that GTUType.
1286      * @param gtuType the GTU type to provide the speed limit for
1287      */
1288     public final void removeSpeedLimit(final GTUType gtuType)
1289     {
1290         this.speedLimitMap.remove(gtuType);
1291     }
1292 
1293     /**
1294      * @return laneType.
1295      */
1296     public final LaneType getLaneType()
1297     {
1298         return this.laneType;
1299     }
1300 
1301     /**
1302      * The direction in which vehicles can drive, i.e., in direction of geometry, reverse, or both. This can differ per GTU
1303      * type. In an overtake lane, cars might overtake and trucks not. It might be that the lane (e.g., a street in a city) is
1304      * FORWARD (from start node of the link to end node of the link) for the GTU type CAR, but BOTH for the GTU type BICYCLE
1305      * (i.e., bicycles can also go in the other direction, opposite to the drawing direction of the Link). If the directionality
1306      * for a GTUType is set to NONE, this means that the given GTUType cannot use the Lane. If a Directionality is set for
1307      * GTUType.ALL, the getDirectionality will default to these settings when there is no specific entry for a given
1308      * directionality. This means that the settings can be used additive, or restrictive. <br>
1309      * In <b>additive use</b>, set the directionality for GTUType.ALL to NONE, or do not set the directionality for GTUType.ALL.
1310      * Now, one by one, the allowed directionalities can be added. An example is a lane on a highway, which we only open for
1311      * CAR, TRUCK and BUS. <br>
1312      * In <b>restrictive use</b>, set the directionality for GTUType.ALL to BOTH, FORWARD, or BACKWARD. Override the
1313      * directionality for certain GTUTypes to a more restrictive access, e.g. to NONE. An example is a lane that is open for all
1314      * road users, except TRUCK.
1315      * @param gtuType the GTU type to provide the directionality for
1316      * @return the directionality.
1317      */
1318     public final LongitudinalDirectionality getDirectionality(final GTUType gtuType)
1319     {
1320         if (this.directionalityMap.containsKey(gtuType))
1321         {
1322             return this.directionalityMap.get(gtuType);
1323         }
1324         if (this.directionalityMap.containsKey(GTUType.ALL))
1325         {
1326             return this.directionalityMap.get(GTUType.ALL);
1327         }
1328         return LongitudinalDirectionality.DIR_NONE;
1329     }
1330 
1331     /**
1332      * This method sets the directionality of the lane for a GTU type. It might be that the driving direction in the lane is
1333      * FORWARD (from start node of the link to end node of the link) for the GTU type CAR, but BOTH for the GTU type BICYCLE
1334      * (i.e., bicycles can also go in the other direction; we see this on some city streets). If the directionality for a
1335      * GTUType is set to NONE, this means that the given GTUType cannot use the Lane. If a Directionality is set for
1336      * GTUType.ALL, the getDirectionality will default to these settings when there is no specific entry for a given
1337      * directionality. This means that the settings can be used additive, or restrictive. <br>
1338      * In <b>additive use</b>, set the directionality for GTUType.ALL to NONE, or do not set the directionality for GTUType.ALL.
1339      * Now, one by one, the allowed directionalities can be added. An example is a lane on a highway, which we only open for
1340      * CAR, TRUCK and BUS. <br>
1341      * In <b>restrictive use</b>, set the directionality for GTUType.ALL to BOTH, FORWARD, or BACKWARD. Override the
1342      * directionality for certain GTUTypes to a more restrictive access, e.g. to NONE. An example is a lane that is open for all
1343      * road users, except TRUCK.
1344      * @param gtuType the GTU type to set the directionality for.
1345      * @param directionality the longitudinal directionality of the link (FORWARD, BACKWARD, BOTH or NONE) for the given GTU
1346      *            type.
1347      * @throws NetworkException when the lane directionality for the given GTUType is inconsistent with the Link directionality
1348      *             to which the lane belongs.
1349      */
1350     public void addDirectionality(final GTUType gtuType, final LongitudinalDirectionality directionality)
1351             throws NetworkException
1352     {
1353         this.directionalityMap.put(gtuType, directionality);
1354         checkDirectionality();
1355     }
1356 
1357     /**
1358      * This method removes an earlier provided directionality of the lane for a given GTU type, e.g. for maintenance of the
1359      * lane. After removing, the directionality for the GTU will fall back to the provided directionality for GTUType.ALL (if
1360      * present). Thereby removing a directionality is different from setting the directionality to NONE.
1361      * @param gtuType the GTU type to remove the directionality for on this lane.
1362      */
1363     public void removeDirectionality(final GTUType gtuType)
1364     {
1365         this.directionalityMap.remove(gtuType);
1366     }
1367 
1368     /**
1369      * Check whether the directionalities for the GTU types for this lane are consistent with the directionalities of the
1370      * overarching Link.
1371      * @throws NetworkException when the lane directionality for a given GTUType is inconsistent with the Link directionality to
1372      *             which the lane belongs.
1373      */
1374     private void checkDirectionality() throws NetworkException
1375     {
1376         for (GTUType gtuType : this.directionalityMap.keySet())
1377         {
1378             LongitudinalDirectionality directionality = this.directionalityMap.get(gtuType);
1379             if (!getParentLink().getDirectionality(gtuType).contains(directionality))
1380             {
1381                 throw new NetworkException("Lane " + toString() + " allows " + gtuType + " a directionality of "
1382                         + directionality + " which is not present in the overarching link " + getParentLink().toString());
1383             }
1384         }
1385     }
1386 
1387     /**
1388      * @return gtuList.
1389      */
1390     public final List<LaneBasedGTU> getGtuList()
1391     {
1392         return this.gtuList == null ? new ArrayList<>() : this.gtuList;
1393     }
1394 
1395     /** {@inheritDoc} */
1396     @Override
1397     @SuppressWarnings("checkstyle:designforextension")
1398     protected double getZ()
1399     {
1400         return 0.0;
1401     }
1402 
1403     /**
1404      * @return overtakingConditions
1405      */
1406     public final OvertakingConditions getOvertakingConditions()
1407     {
1408         return this.overtakingConditions;
1409     }
1410 
1411     /** {@inheritDoc} */
1412     public final String toString()
1413     {
1414         CrossSectionLink link = getParentLink();
1415         return String.format("Lane %s of %s", getId(), link.getId());
1416     }
1417 
1418     /** Cache of the hashCode. */
1419     private Integer cachedHashCode = null;
1420 
1421     /** {@inheritDoc} */
1422     @SuppressWarnings("checkstyle:designforextension")
1423     @Override
1424     public int hashCode()
1425     {
1426         if (this.cachedHashCode == null)
1427         {
1428             final int prime = 31;
1429             int result = super.hashCode();
1430             result = prime * result + ((this.laneType == null) ? 0 : this.laneType.hashCode());
1431             this.cachedHashCode = result;
1432         }
1433         return this.cachedHashCode;
1434     }
1435 
1436     /** {@inheritDoc} */
1437     @SuppressWarnings({ "checkstyle:designforextension", "checkstyle:needbraces" })
1438     @Override
1439     public boolean equals(final Object obj)
1440     {
1441         if (this == obj)
1442             return true;
1443         if (!super.equals(obj))
1444             return false;
1445         if (getClass() != obj.getClass())
1446             return false;
1447         Lane other = (Lane) obj;
1448         if (this.laneType == null)
1449         {
1450             if (other.laneType != null)
1451                 return false;
1452         }
1453         else if (!this.laneType.equals(other.laneType))
1454             return false;
1455         return true;
1456     }
1457 
1458     /** {@inheritDoc} */
1459     @Override
1460     @SuppressWarnings("checkstyle:designforextension")
1461     public Lane clone(final CrossSectionLink newParentLink, final OTSSimulatorInterface newSimulator, final boolean animation)
1462             throws NetworkException
1463     {
1464         try
1465         {
1466             Lane newLane = new Lane(newParentLink, newSimulator, animation, this);
1467             // nextLanes, prevLanes, nextNeighbors, rightNeighbors are filled at first request
1468 
1469             SortedMap<Double, List<Sensor>> newSensorMap = new TreeMap<>();
1470             for (double distance : this.sensors.keySet())
1471             {
1472                 List<Sensor> newSensorList = new ArrayList<>();
1473                 for (Sensor sensor : this.sensors.get(distance))
1474                 {
1475                     Sensor newSensor = ((AbstractSensor) sensor).clone(newLane, newSimulator, animation);
1476                     newSensorList.add(newSensor);
1477                 }
1478                 newSensorMap.put(distance, newSensorList);
1479             }
1480             newLane.sensors.clear();
1481             newLane.sensors.putAll(newSensorMap);
1482 
1483             SortedMap<Double, List<LaneBasedObject>> newLaneBasedObjectMap = new TreeMap<>();
1484             for (double distance : this.laneBasedObjects.keySet())
1485             {
1486                 List<LaneBasedObject> newLaneBasedObjectList = new ArrayList<>();
1487                 for (LaneBasedObject lbo : this.laneBasedObjects.get(distance))
1488                 {
1489                     AbstractLaneBasedObject laneBasedObject = (AbstractLaneBasedObject) lbo;
1490                     LaneBasedObject newLbo = laneBasedObject.clone(newLane, newSimulator, animation);
1491                     newLaneBasedObjectList.add(newLbo);
1492                 }
1493                 newLaneBasedObjectMap.put(distance, newLaneBasedObjectList);
1494             }
1495             newLane.laneBasedObjects.clear();
1496             newLane.laneBasedObjects.putAll(newLaneBasedObjectMap);
1497 
1498             if (animation)
1499             {
1500                 new LaneAnimation(newLane, newSimulator, Color.DARK_GRAY, false);
1501             }
1502             return newLane;
1503         }
1504         catch (NamingException | RemoteException exception)
1505         {
1506             throw new NetworkException(exception);
1507         }
1508     }
1509 }