1 package org.opentrafficsim.core.geometry; 2 3 import java.awt.geom.Line2D; 4 5 import nl.tudelft.simulation.language.Throw; 6 import nl.tudelft.simulation.language.d3.DirectedPoint; 7 8 /** 9 * Generation of Bézier curves. <br> 10 * The class implements the cubic(...) method to generate a cubic Bézier curve using the following formula: B(t) = (1 - 11 * t)<sup>3</sup>P<sub>0</sub> + 3t(1 - t)<sup>2</sup> P<sub>1</sub> + 3t<sup>2</sup> (1 - t) P<sub>2</sub> + t<sup>3</sup> 12 * P<sub>3</sub> where P<sub>0</sub> and P<sub>3</sub> are the end points, and P<sub>1</sub> and P<sub>2</sub> the control 13 * points. <br> 14 * For a smooth movement, one of the standard implementations if the cubic(...) function offered is the case where P<sub>1</sub> 15 * is positioned halfway between P<sub>0</sub> and P<sub>3</sub> starting from P<sub>0</sub> in the direction of P<sub>3</sub>, 16 * and P<sub>2</sub> is positioned halfway between P<sub>3</sub> and P<sub>0</sub> starting from P<sub>3</sub> in the direction 17 * of P<sub>0</sub>.<br> 18 * Finally, an n-point generalization of the Bézier curve is implemented with the bezier(...) function. 19 * <p> 20 * Copyright (c) 2013-2018 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br> 21 * BSD-style license. See <a href="http://opentrafficsim.org/docs/license.html">OpenTrafficSim License</a>. 22 * </p> 23 * $LastChangedDate: 2015-07-24 02:58:59 +0200 (Fri, 24 Jul 2015) $, @version $Revision: 1147 $, by $Author: averbraeck $, 24 * initial version Nov 14, 2015 <br> 25 * @author <a href="http://www.tbm.tudelft.nl/averbraeck">Alexander Verbraeck</a> 26 * @author <a href="http://www.tudelft.nl/pknoppers">Peter Knoppers</a> 27 */ 28 public final class Bezier 29 { 30 /** The default number of points to use to construct a Bézier curve. */ 31 private static final int DEFAULT_NUM_POINTS = 64; 32 33 /** Cached factorial values. */ 34 private static long[] fact = new long[] { 1L, 1L, 2L, 6L, 24L, 120L, 720L, 5040L, 40320L, 362880L, 3628800L, 39916800L, 35 479001600L, 6227020800L, 87178291200L, 1307674368000L, 20922789888000L, 355687428096000L, 6402373705728000L, 36 121645100408832000L, 2432902008176640000L }; 37 38 /** Utility class. */ 39 private Bezier() 40 { 41 // do not instantiate 42 } 43 44 /** 45 * Construct a cubic Bézier curve from start to end with two control points. 46 * @param numPoints the number of points for the Bézier curve 47 * @param start the start point of the Bézier curve 48 * @param control1 the first control point 49 * @param control2 the second control point 50 * @param end the end point of the Bézier curve 51 * @return a cubic Bézier curve between start and end, with the two provided control points 52 * @throws OTSGeometryException in case the number of points is less than 2 or the Bézier curve could not be 53 * constructed 54 */ 55 public static OTSLine3D cubic(final int numPoints, final OTSPoint3D start, final OTSPoint3D control1, 56 final OTSPoint3D control2, final OTSPoint3D end) throws OTSGeometryException 57 { 58 Throw.when(numPoints < 2, OTSGeometryException.class, "Number of points too small (got %d; minimum value is 2)", 59 numPoints); 60 OTSPoint3D[] points = new OTSPoint3D[numPoints]; 61 for (int n = 0; n < numPoints; n++) 62 { 63 double t = n / (numPoints - 1.0); 64 double x = B3(t, start.x, control1.x, control2.x, end.x); 65 double y = B3(t, start.y, control1.y, control2.y, end.y); 66 double z = B3(t, start.z, control1.z, control2.z, end.z); 67 points[n] = new OTSPoint3D(x, y, z); 68 } 69 return new OTSLine3D(points); 70 } 71 72 /** 73 * Construct a cubic Bézier curve from start to end with two generated control points at half the distance between 74 * start and end. The z-value is interpolated in a linear way. 75 * @param numPoints the number of points for the Bézier curve 76 * @param start the directed start point of the Bézier curve 77 * @param end the directed end point of the Bézier curve 78 * @return a cubic Bézier curve between start and end, with the two provided control points 79 * @throws OTSGeometryException in case the number of points is less than 2 or the Bézier curve could not be 80 * constructed 81 */ 82 public static OTSLine3D cubic(final int numPoints, final DirectedPoint start, final DirectedPoint end) 83 throws OTSGeometryException 84 { 85 return cubic(numPoints, start, end, 1.0); 86 } 87 88 /** 89 * Construct a cubic Bézier curve from start to end with two generated control points at half the distance between 90 * start and end. The z-value is interpolated in a linear way. 91 * @param numPoints the number of points for the Bézier curve 92 * @param start the directed start point of the Bézier curve 93 * @param end the directed end point of the Bézier curve 94 * @param shape shape factor; 1 = control points at half the distance between start and end, > 1 results in a pointier 95 * shape, < 1 results in a flatter shape, value should be above 0 96 * @return a cubic Bézier curve between start and end, with the two determined control points 97 * @throws OTSGeometryException in case the number of points is less than 2 or the Bézier curve could not be 98 * constructed 99 */ 100 public static OTSLine3D cubic(final int numPoints, final DirectedPoint start, final DirectedPoint end, final double shape) 101 throws OTSGeometryException 102 { 103 return cubic(numPoints, start, end, shape, false); 104 } 105 106 /** 107 * Construct a cubic Bézier curve from start to end with two generated control points at half the distance between 108 * start and end. The z-value is interpolated in a linear way. 109 * @param numPoints the number of points for the Bézier curve 110 * @param start the directed start point of the Bézier curve 111 * @param end the directed end point of the Bézier curve 112 * @param shape shape factor; 1 = control points at half the distance between start and end, > 1 results in a pointier 113 * shape, < 1 results in a flatter shape, value should be above 0 114 * @param weighted boolean; control point distance relates to distance to projected point on extended line from other end 115 * @return a cubic Bézier curve between start and end, with the two determined control points 116 * @throws OTSGeometryException in case the number of points is less than 2 or the Bézier curve could not be 117 * constructed 118 */ 119 public static OTSLine3D cubic(final int numPoints, final DirectedPoint start, final DirectedPoint end, final double shape, 120 final boolean weighted) throws OTSGeometryException 121 { 122 OTSPoint3D control1; 123 OTSPoint3D control2; 124 125 if (weighted) 126 { 127 // each control point is 'w' * the distance between the end-points away from the respective end point 128 // 'w' is a weight given by the distance from the end point to the extended line of the other end point 129 double distance = shape * Math.sqrt((end.x - start.x) * (end.x - start.x) + (end.y - start.y) * (end.y - start.y)); 130 double cosEnd = Math.cos(end.getRotZ()); 131 double sinEnd = Math.sin(end.getRotZ()); 132 double dStart = Line2D.ptLineDist(end.x, end.y, end.x + cosEnd, end.y + sinEnd, start.x, start.y); 133 double cosStart = Math.cos(start.getRotZ()); 134 double sinStart = Math.sin(start.getRotZ()); 135 double dEnd = Line2D.ptLineDist(start.x, start.y, start.x + cosStart, start.y + sinStart, end.x, end.y); 136 double wStart = dStart / (dStart + dEnd); 137 double wEnd = dEnd / (dStart + dEnd); 138 double wStartDistance = wStart * distance; 139 double wEndDistance = wEnd * distance; 140 control1 = new OTSPoint3D(start.x + wStartDistance * cosStart, start.y + wStartDistance * sinStart); 141 // - (minus) as the angle is where the line leaves, i.e. from shape point to end 142 control2 = new OTSPoint3D(end.x - wEndDistance * cosEnd, end.y - wEndDistance * sinEnd); 143 } 144 else 145 { 146 // each control point is half the distance between the end-points away from the respective end point 147 double distance2 = 148 shape * Math.sqrt((end.x - start.x) * (end.x - start.x) + (end.y - start.y) * (end.y - start.y)) / 2.0; 149 control1 = new OTSPoint3D(start.x + distance2 * Math.cos(start.getRotZ()), 150 start.y + distance2 * Math.sin(start.getRotZ()), start.z); 151 control2 = new OTSPoint3D(end.x - distance2 * Math.cos(end.getRotZ()), end.y - distance2 * Math.sin(end.getRotZ()), 152 end.z); 153 } 154 155 // Limit control points to not intersect with the other (infinite) line 156 OTSPoint3D s = new OTSPoint3D(start); 157 OTSPoint3D e = new OTSPoint3D(end); 158 159 // return cubic(numPoints, new OTSPoint3D(start), control1, control2, new OTSPoint3D(end)); 160 return bezier(numPoints, s, control1, control2, e); 161 } 162 163 /** 164 * Construct a cubic Bézier curve from start to end with two generated control points at half the distance between 165 * start and end. The z-value is interpolated in a linear way. 166 * @param start the directed start point of the Bézier curve 167 * @param end the directed end point of the Bézier curve 168 * @return a cubic Bézier curve between start and end, with the two provided control points 169 * @throws OTSGeometryException in case the number of points is less than 2 or the Bézier curve could not be 170 * constructed 171 */ 172 public static OTSLine3D cubic(final DirectedPoint start, final DirectedPoint end) throws OTSGeometryException 173 { 174 return cubic(DEFAULT_NUM_POINTS, start, end); 175 } 176 177 /** 178 * Calculate the cubic Bézier point with B(t) = (1 - t)<sup>3</sup>P<sub>0</sub> + 3t(1 - t)<sup>2</sup> 179 * P<sub>1</sub> + 3t<sup>2</sup> (1 - t) P<sub>2</sub> + t<sup>3</sup> P<sub>3</sub>. 180 * @param t the fraction 181 * @param p0 the first point of the curve 182 * @param p1 the first control point 183 * @param p2 the second control point 184 * @param p3 the end point of the curve 185 * @return the cubic bezier value B(t) 186 */ 187 @SuppressWarnings("checkstyle:methodname") 188 private static double B3(final double t, final double p0, final double p1, final double p2, final double p3) 189 { 190 double t2 = t * t; 191 double t3 = t2 * t; 192 double m = (1.0 - t); 193 double m2 = m * m; 194 double m3 = m2 * m; 195 return m3 * p0 + 3.0 * t * m2 * p1 + 3.0 * t2 * m * p2 + t3 * p3; 196 } 197 198 /** 199 * Construct a Bézier curve of degree n. 200 * @param numPoints the number of points for the Bézier curve to be constructed 201 * @param points the points of the curve, where the first and last are begin and end point, and the intermediate ones are 202 * control points. There should be at least two points. 203 * @return the Bézier value B(t) of degree n, where n is the number of points in the array 204 * @throws OTSGeometryException in case the number of points is less than 2 or the Bézier curve could not be 205 * constructed 206 */ 207 public static OTSLine3D bezier(final int numPoints, final OTSPoint3D... points) throws OTSGeometryException 208 { 209 OTSPoint3D[] result = new OTSPoint3D[numPoints]; 210 double[] px = new double[points.length]; 211 double[] py = new double[points.length]; 212 double[] pz = new double[points.length]; 213 for (int i = 0; i < points.length; i++) 214 { 215 px[i] = points[i].x; 216 py[i] = points[i].y; 217 pz[i] = points[i].z; 218 } 219 for (int n = 0; n < numPoints; n++) 220 { 221 double t = n / (numPoints - 1.0); 222 double x = Bn(t, px); 223 double y = Bn(t, py); 224 double z = Bn(t, pz); 225 result[n] = new OTSPoint3D(x, y, z); 226 } 227 return new OTSLine3D(result); 228 } 229 230 /** 231 * Construct a Bézier curve of degree n. 232 * @param points the points of the curve, where the first and last are begin and end point, and the intermediate ones are 233 * control points. There should be at least two points. 234 * @return the Bézier value B(t) of degree n, where n is the number of points in the array 235 * @throws OTSGeometryException in case the number of points is less than 2 or the Bézier curve could not be 236 * constructed 237 */ 238 public static OTSLine3D bezier(final OTSPoint3D... points) throws OTSGeometryException 239 { 240 return bezier(DEFAULT_NUM_POINTS, points); 241 } 242 243 /** 244 * Calculate the Bézier point of degree n, with B(t) = Sum(i = 0..n) [C(n, i) * (1 - t)<sup>n-i</sup> t<sup>i</sup> 245 * P<sub>i</sub>], where C(n, k) is the binomial coefficient defined by n! / ( k! (n-k)! ), ! being the factorial operator. 246 * @param t the fraction 247 * @param p the points of the curve, where the first and last are begin and end point, and the intermediate ones are control 248 * points 249 * @return the Bézier value B(t) of degree n, where n is the number of points in the array 250 */ 251 @SuppressWarnings("checkstyle:methodname") 252 private static double Bn(final double t, final double... p) 253 { 254 double b = 0.0; 255 double m = (1.0 - t); 256 int n = p.length - 1; 257 double fn = factorial(n); 258 for (int i = 0; i <= n; i++) 259 { 260 double c = fn / (factorial(i) * (factorial(n - i))); 261 b += c * Math.pow(m, n - i) * Math.pow(t, i) * p[i]; 262 } 263 return b; 264 } 265 266 /** 267 * Calculate factorial(k), which is k * (k-1) * (k-2) * ... * 1. For factorials up to 20, a lookup table is used. 268 * @param k the parameter 269 * @return factorial(k) 270 */ 271 private static double factorial(final int k) 272 { 273 if (k < fact.length) 274 { 275 return fact[k]; 276 } 277 double f = 1; 278 for (int i = 2; i <= k; i++) 279 { 280 f = f * i; 281 } 282 return f; 283 } 284 285 /** 286 * @param args args 287 * @throws OTSGeometryException ne 288 */ 289 public static void main(final String[] args) throws OTSGeometryException 290 { 291 // DirectedPoint s = new DirectedPoint(0, 0, 0, 0, 0, -Math.PI/2.0); 292 // DirectedPoint e = new DirectedPoint(10, 10, 20, 0, 0, Math.PI); 293 // OTSLine3D b1 = Bezier.cubic(s, e); 294 // for (OTSPoint3D p : b1.getPoints()) 295 // { 296 // System.out.println(p.x + "\t" + p.y + "\t" + p.z); 297 // } 298 299 OTSPoint3D s = new OTSPoint3D(0, 0, 0); 300 OTSPoint3D s1 = new OTSPoint3D(10, 0, 0); 301 OTSPoint3D m1 = new OTSPoint3D(25, 5, 0); 302 OTSPoint3D m2 = new OTSPoint3D(-15, 5, 0); 303 OTSPoint3D e0 = new OTSPoint3D(0, 10, 20); 304 OTSPoint3D e = new OTSPoint3D(10, 10, 20); 305 OTSLine3D b1 = Bezier.bezier(s, s1, m1, m2, e0, e); 306 for (OTSPoint3D p : b1.getPoints()) 307 { 308 System.out.println(p.x + "\t" + p.y + "\t" + p.z); 309 } 310 311 } 312 }