View Javadoc
1   package org.opentrafficsim.road.gtu.lane.plan.operational;
2   
3   import java.util.ArrayList;
4   import java.util.Arrays;
5   import java.util.Iterator;
6   import java.util.List;
7   import java.util.Map;
8   
9   import org.djunits.unit.AccelerationUnit;
10  import org.djunits.unit.DurationUnit;
11  import org.djunits.unit.LengthUnit;
12  import org.djunits.unit.SpeedUnit;
13  import org.djunits.value.ValueRuntimeException;
14  import org.djunits.value.vdouble.scalar.Acceleration;
15  import org.djunits.value.vdouble.scalar.Duration;
16  import org.djunits.value.vdouble.scalar.Length;
17  import org.djunits.value.vdouble.scalar.Speed;
18  import org.djunits.value.vdouble.scalar.Time;
19  import org.djutils.exceptions.Throw;
20  import org.opentrafficsim.base.parameters.ParameterException;
21  import org.opentrafficsim.core.geometry.OTSGeometryException;
22  import org.opentrafficsim.core.geometry.OTSLine3D;
23  import org.opentrafficsim.core.geometry.OTSPoint3D;
24  import org.opentrafficsim.core.gtu.GTUException;
25  import org.opentrafficsim.core.gtu.plan.operational.OperationalPlan;
26  import org.opentrafficsim.core.gtu.plan.operational.OperationalPlan.Segment;
27  import org.opentrafficsim.core.gtu.plan.operational.OperationalPlan.SpeedSegment;
28  import org.opentrafficsim.core.gtu.plan.operational.OperationalPlanException;
29  import org.opentrafficsim.core.math.Solver;
30  import org.opentrafficsim.core.network.LateralDirectionality;
31  import org.opentrafficsim.core.network.NetworkException;
32  import org.opentrafficsim.road.gtu.lane.LaneBasedGTU;
33  import org.opentrafficsim.road.network.lane.DirectedLanePosition;
34  import org.opentrafficsim.road.network.lane.Lane;
35  import org.opentrafficsim.road.network.lane.LaneDirection;
36  import org.opentrafficsim.road.network.lane.object.sensor.SingleSensor;
37  import org.opentrafficsim.road.network.lane.object.sensor.SinkSensor;
38  
39  import nl.tudelft.simulation.dsol.SimRuntimeException;
40  import nl.tudelft.simulation.dsol.formalisms.eventscheduling.SimEventInterface;
41  import nl.tudelft.simulation.dsol.simtime.SimTimeDoubleUnit;
42  import nl.tudelft.simulation.language.d3.DirectedPoint;
43  
44  /**
45   * Builder for several often used operational plans. E.g., decelerate to come to a full stop at the end of a shape; accelerate
46   * to reach a certain speed at the end of a curve; drive constant on a curve; decelerate or accelerate to reach a given end
47   * speed at the end of a curve, etc.<br>
48   * TODO driving with negative speeds (backward driving) is not yet supported.
49   * <p>
50   * Copyright (c) 2013-2020 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
51   * BSD-style license. See <a href="http://opentrafficsim.org/docs/license.html">OpenTrafficSim License</a>.
52   * </p>
53   * $LastChangedDate: 2015-07-24 02:58:59 +0200 (Fri, 24 Jul 2015) $, @version $Revision: 1147 $, by $Author: averbraeck $,
54   * initial version Nov 15, 2015 <br>
55   * @author <a href="http://www.tbm.tudelft.nl/averbraeck">Alexander Verbraeck</a>
56   * @author <a href="http://www.tudelft.nl/pknoppers">Peter Knoppers</a>
57   */
58  public final class LaneOperationalPlanBuilder // class package private for scheduling static method on an instance
59  {
60  
61      /** Maximum acceleration for unbounded accelerations: 1E12 m/s2. */
62      private static final Acceleration MAX_ACCELERATION = new Acceleration(1E12, AccelerationUnit.SI);
63  
64      /** Maximum deceleration for unbounded accelerations: -1E12 m/s2. */
65      private static final Acceleration MAX_DECELERATION = new Acceleration(-1E12, AccelerationUnit.SI);
66  
67      /**
68       * Minimum distance of an operational plan path; anything shorter will be truncated to 0. <br>
69       * If objects related to e.g. molecular movements are simulated using this code, a setter for this parameter will be needed.
70       */
71      private static final Length MINIMUM_CREDIBLE_PATH_LENGTH = new Length(0.001, LengthUnit.METER);
72  
73      /** Constructor. */
74      LaneOperationalPlanBuilder()
75      {
76          // class should not be instantiated
77      }
78  
79      /**
80       * Build a plan with a path and a given start speed to try to reach a provided end speed, exactly at the end of the curve.
81       * The acceleration (and deceleration) are capped by maxAcceleration and maxDeceleration. Therefore, there is no guarantee
82       * that the end speed is actually reached by this plan.
83       * @param gtu LaneBasedGTU; the GTU for debugging purposes
84       * @param distance Length; distance to drive for reaching the end speed
85       * @param startTime Time; the current time or a time in the future when the plan should start
86       * @param startSpeed Speed; the speed at the start of the path
87       * @param endSpeed Speed; the required end speed
88       * @param maxAcceleration Acceleration; the maximum acceleration that can be applied, provided as a POSITIVE number
89       * @param maxDeceleration Acceleration; the maximum deceleration that can be applied, provided as a NEGATIVE number
90       * @return the operational plan to accomplish the given end speed
91       * @throws OperationalPlanException when the plan cannot be generated, e.g. because of a path that is too short
92       * @throws OperationalPlanException when the length of the path and the calculated driven distance implied by the
93       *             constructed segment list differ more than a given threshold
94       * @throws OTSGeometryException in case the lanes are not connected or firstLanePosition is larger than the length of the
95       *             first lane
96       */
97      public static LaneBasedOperationalPlan buildGradualAccelerationPlan(final LaneBasedGTU gtu, final Length distance,
98              final Time startTime, final Speed startSpeed, final Speed endSpeed, final Acceleration maxAcceleration,
99              final Acceleration maxDeceleration) throws OperationalPlanException, OTSGeometryException
100     {
101         OTSLine3D path = createPathAlongCenterLine(gtu, distance);
102         Segment segment;
103         if (startSpeed.eq(endSpeed))
104         {
105             segment = new SpeedSegment(distance.divide(startSpeed));
106         }
107         else
108         {
109             try
110             {
111                 // t = 2x / (vt + v0); a = (vt - v0) / t
112                 Duration duration = distance.times(2.0).divide(endSpeed.plus(startSpeed));
113                 Acceleration acceleration = endSpeed.minus(startSpeed).divide(duration);
114                 if (acceleration.si < 0.0 && acceleration.lt(maxDeceleration))
115                 {
116                     acceleration = maxDeceleration;
117                     duration = new Duration(Solver.firstSolutionAfter(0, acceleration.si / 2, startSpeed.si, -distance.si),
118                             DurationUnit.SI);
119                 }
120                 if (acceleration.si > 0.0 && acceleration.gt(maxAcceleration))
121                 {
122                     acceleration = maxAcceleration;
123                     duration = new Duration(Solver.firstSolutionAfter(0, acceleration.si / 2, startSpeed.si, -distance.si),
124                             DurationUnit.SI);
125                 }
126                 segment = new OperationalPlan.AccelerationSegment(duration, acceleration);
127             }
128             catch (ValueRuntimeException ve)
129             {
130                 throw new OperationalPlanException(ve);
131             }
132         }
133         ArrayList<Segment> segmentList = new ArrayList<>();
134         segmentList.add(segment);
135         return new LaneBasedOperationalPlan(gtu, path, startTime, startSpeed, segmentList, false);
136     }
137 
138     /**
139      * Build a plan with a path and a given start speed to reach a provided end speed, exactly at the end of the curve.
140      * Acceleration and deceleration are virtually unbounded (1E12 m/s2) to reach the end speed (e.g., to come to a complete
141      * stop).
142      * @param gtu LaneBasedGTU; the GTU for debugging purposes
143      * @param distance Length; distance to drive for reaching the end speed
144      * @param startTime Time; the current time or a time in the future when the plan should start
145      * @param startSpeed Speed; the speed at the start of the path
146      * @param endSpeed Speed; the required end speed
147      * @return the operational plan to accomplish the given end speed
148      * @throws OperationalPlanException when the length of the path and the calculated driven distance implied by the
149      *             constructed segment list differ more than a given threshold
150      * @throws OTSGeometryException in case the lanes are not connected or firstLanePositiion is larger than the length of the
151      *             first lane
152      */
153     public static LaneBasedOperationalPlan buildGradualAccelerationPlan(final LaneBasedGTU gtu, final Length distance,
154             final Time startTime, final Speed startSpeed, final Speed endSpeed)
155             throws OperationalPlanException, OTSGeometryException
156     {
157         return buildGradualAccelerationPlan(gtu, distance, startTime, startSpeed, endSpeed, MAX_ACCELERATION, MAX_DECELERATION);
158     }
159 
160     /**
161      * Build a plan with a path and a given start speed to try to reach a provided end speed. Acceleration or deceleration is as
162      * provided, until the end speed is reached. After this, constant end speed is used to reach the end point of the path.
163      * There is no guarantee that the end speed is actually reached by this plan. If the end speed is zero, and it is reached
164      * before completing the path, a truncated path that ends where the GTU stops is used instead.
165      * @param gtu LaneBasedGTU; the GTU for debugging purposes
166      * @param distance Length; distance to drive for reaching the end speed
167      * @param startTime Time; the current time or a time in the future when the plan should start
168      * @param startSpeed Speed; the speed at the start of the path
169      * @param endSpeed Speed; the required end speed
170      * @param acceleration Acceleration; the acceleration to use if endSpeed &gt; startSpeed, provided as a POSITIVE number
171      * @param deceleration Acceleration; the deceleration to use if endSpeed &lt; startSpeed, provided as a NEGATIVE number
172      * @return the operational plan to accomplish the given end speed
173      * @throws OperationalPlanException when the construction of the operational path fails
174      * @throws OTSGeometryException in case the lanes are not connected or firstLanePositiion is larger than the length of the
175      *             first lane
176      */
177     public static LaneBasedOperationalPlan buildMaximumAccelerationPlan(final LaneBasedGTU gtu, final Length distance,
178             final Time startTime, final Speed startSpeed, final Speed endSpeed, final Acceleration acceleration,
179             final Acceleration deceleration) throws OperationalPlanException, OTSGeometryException
180     {
181         OTSLine3D path = createPathAlongCenterLine(gtu, distance);
182         ArrayList<Segment> segmentList = new ArrayList<>();
183         if (startSpeed.eq(endSpeed))
184         {
185             segmentList.add(new OperationalPlan.SpeedSegment(distance.divide(startSpeed)));
186         }
187         else
188         {
189             try
190             {
191                 if (endSpeed.gt(startSpeed))
192                 {
193                     Duration t = endSpeed.minus(startSpeed).divide(acceleration);
194                     Length x = startSpeed.times(t).plus(acceleration.times(0.5).times(t).times(t));
195                     if (x.ge(distance))
196                     {
197                         // we cannot reach the end speed in the given distance with the given acceleration
198                         Duration duration =
199                                 new Duration(Solver.firstSolutionAfter(0, acceleration.si / 2, startSpeed.si, -distance.si),
200                                         DurationUnit.SI);
201                         segmentList.add(new OperationalPlan.AccelerationSegment(duration, acceleration));
202                     }
203                     else
204                     {
205                         // we reach the (higher) end speed before the end of the segment. Make two segments.
206                         segmentList.add(new OperationalPlan.AccelerationSegment(t, acceleration));
207                         Duration duration = distance.minus(x).divide(endSpeed);
208                         segmentList.add(new OperationalPlan.SpeedSegment(duration));
209                     }
210                 }
211                 else
212                 {
213                     Duration t = endSpeed.minus(startSpeed).divide(deceleration);
214                     Length x = startSpeed.times(t).plus(deceleration.times(0.5).times(t).times(t));
215                     if (x.ge(distance))
216                     {
217                         // we cannot reach the end speed in the given distance with the given deceleration
218                         Duration duration =
219                                 new Duration(Solver.firstSolutionAfter(0, deceleration.si / 2, startSpeed.si, -distance.si),
220                                         DurationUnit.SI);
221                         segmentList.add(new OperationalPlan.AccelerationSegment(duration, deceleration));
222                     }
223                     else
224                     {
225                         if (endSpeed.si == 0.0)
226                         {
227                             // if endSpeed == 0, we cannot reach the end of the path. Therefore, build a partial path.
228                             OTSLine3D partialPath = path.truncate(x.si);
229                             segmentList.add(new OperationalPlan.AccelerationSegment(t, deceleration));
230                             return new LaneBasedOperationalPlan(gtu, partialPath, startTime, startSpeed, segmentList, false);
231                         }
232                         // we reach the (lower) end speed, larger than zero, before the end of the segment. Make two segments.
233                         segmentList.add(new OperationalPlan.AccelerationSegment(t, deceleration));
234                         Duration duration = distance.minus(x).divide(endSpeed);
235                         segmentList.add(new OperationalPlan.SpeedSegment(duration));
236                     }
237                 }
238             }
239             catch (ValueRuntimeException ve)
240             {
241                 throw new OperationalPlanException(ve);
242             }
243 
244         }
245         return new LaneBasedOperationalPlan(gtu, path, startTime, startSpeed, segmentList, false);
246     }
247 
248     /**
249      * Build a plan with a path and a given start speed to try to reach a provided end speed. Acceleration or deceleration is as
250      * provided, until the end speed is reached. After this, constant end speed is used to reach the end point of the path.
251      * There is no guarantee that the end speed is actually reached by this plan. If the end speed is zero, and it is reached
252      * before completing the path, a truncated path that ends where the GTU stops is used instead.
253      * @param gtu LaneBasedGTU; the GTU for debugging purposes
254      * @param startTime Time; the current time or a time in the future when the plan should start
255      * @param startSpeed Speed; the speed at the start of the path
256      * @param acceleration Acceleration; the acceleration to use
257      * @param timeStep Duration; time step for the plan
258      * @param deviative boolean; whether the plan is deviative
259      * @return the operational plan to accomplish the given end speed
260      * @throws OperationalPlanException when the construction of the operational path fails
261      * @throws OTSGeometryException in case the lanes are not connected or firstLanePositiion is larger than the length of the
262      *             first lane
263      */
264     public static LaneBasedOperationalPlan buildAccelerationPlan(final LaneBasedGTU gtu, final Time startTime,
265             final Speed startSpeed, final Acceleration acceleration, final Duration timeStep, final boolean deviative)
266             throws OperationalPlanException, OTSGeometryException
267     {
268         if (startSpeed.si <= OperationalPlan.DRIFTING_SPEED_SI && acceleration.le(Acceleration.ZERO))
269         {
270             return new LaneBasedOperationalPlan(gtu, gtu.getLocation(), startTime, timeStep, deviative);
271         }
272 
273         Duration brakingTime = brakingTime(acceleration, startSpeed, timeStep);
274         Length distance =
275                 Length.instantiateSI(startSpeed.si * brakingTime.si + .5 * acceleration.si * brakingTime.si * brakingTime.si);
276         List<Segment> segmentList = createAccelerationSegments(startSpeed, acceleration, brakingTime, timeStep);
277         if (distance.le(MINIMUM_CREDIBLE_PATH_LENGTH))
278         {
279             return new LaneBasedOperationalPlan(gtu, gtu.getLocation(), startTime, timeStep, deviative);
280         }
281         OTSLine3D path = createPathAlongCenterLine(gtu, distance);
282         return new LaneBasedOperationalPlan(gtu, path, startTime, startSpeed, segmentList, deviative);
283     }
284 
285     /**
286      * Creates a path along lane center lines.
287      * @param gtu LaneBasedGTU; gtu
288      * @param distance Length; minimum distance
289      * @return OTSLine3D; path along lane center lines
290      * @throws OTSGeometryException when any of the OTSLine3D operations fails
291      */
292     public static OTSLine3D createPathAlongCenterLine(final LaneBasedGTU gtu, final Length distance) throws OTSGeometryException
293     {
294         OTSLine3D path = null;
295         try
296         {
297             DirectedLanePosition ref = gtu.getReferencePosition();
298             double f = ref.getLane().fraction(ref.getPosition());
299             if (ref.getGtuDirection().isPlus() && f < 1.0)
300             {
301                 if (f >= 0.0)
302                 {
303                     path = ref.getLane().getCenterLine().extractFractional(f, 1.0);
304                 }
305                 else
306                 {
307                     path = ref.getLane().getCenterLine().extractFractional(0.0, 1.0);
308                 }
309             }
310             else if (ref.getGtuDirection().isMinus() && f > 0.0)
311             {
312                 if (f <= 1.0)
313                 {
314                     path = ref.getLane().getCenterLine().extractFractional(0.0, f).reverse();
315                 }
316                 else
317                 {
318                     path = ref.getLane().getCenterLine().extractFractional(0.0, 1.0).reverse();
319                 }
320             }
321             LaneDirection prevFrom = null;
322             LaneDirection from = ref.getLaneDirection();
323             int n = 1;
324             while (path == null || path.getLength().si < distance.si + n * Lane.MARGIN.si)
325             {
326                 n++;
327                 prevFrom = from;
328                 from = from.getNextLaneDirection(gtu);
329                 if (from == null)
330                 {
331                     // check sink sensor
332                     Length pos = prevFrom.getDirection().isPlus() ? prevFrom.getLength() : Length.ZERO;
333                     for (SingleSensor sensor : prevFrom.getLane().getSensors(pos, pos, gtu.getGTUType(),
334                             prevFrom.getDirection()))
335                     {
336                         // XXX for now, the same is not done for the DestinationSensor (e.g., decrease speed for parking)
337                         if (sensor instanceof SinkSensor)
338                         {
339                             // just add some length so the GTU is happy to go to the sink
340                             DirectedPoint end = path.getLocationExtendedSI(distance.si + n * Lane.MARGIN.si);
341                             List<OTSPoint3D> points = new ArrayList<>(Arrays.asList(path.getPoints()));
342                             points.add(new OTSPoint3D(end));
343                             return new OTSLine3D(points);
344                         }
345                     }
346                 }
347                 if (path == null)
348                 {
349                     path = from.getDirection().isPlus() ? from.getLane().getCenterLine()
350                             : from.getLane().getCenterLine().reverse();
351                 }
352                 else
353                 {
354                     path = OTSLine3D.concatenate(Lane.MARGIN.si, path, from.getDirection().isPlus()
355                             ? from.getLane().getCenterLine() : from.getLane().getCenterLine().reverse());
356                 }
357             }
358         }
359         catch (GTUException exception)
360         {
361             throw new RuntimeException("Error during creation of path.", exception);
362         }
363         return path;
364     }
365 
366     /**
367      * Build a plan with a path and a given start speed to try to reach a provided end speed. Acceleration or deceleration is as
368      * provided, until the end speed is reached. After this, constant end speed is used to reach the end point of the path.
369      * There is no guarantee that the end speed is actually reached by this plan. If the end speed is zero, and it is reached
370      * before completing the path, a truncated path that ends where the GTU stops is used instead.
371      * @param gtu LaneBasedGTU; the GTU for debugging purposes
372      * @param laneChangeDirectionality LateralDirectionality; direction of lane change (on initiation only, after that not
373      *            important)
374      * @param startPosition DirectedPoint; current position
375      * @param startTime Time; the current time or a time in the future when the plan should start
376      * @param startSpeed Speed; the speed at the start of the path
377      * @param acceleration Acceleration; the acceleration to use
378      * @param timeStep Duration; time step for the plan
379      * @param laneChange LaneChange; lane change status
380      * @return the operational plan to accomplish the given end speed
381      * @throws OperationalPlanException when the construction of the operational path fails
382      * @throws OTSGeometryException in case the lanes are not connected or firstLanePositiion is larger than the length of the
383      *             first lane
384      */
385     @SuppressWarnings("checkstyle:parameternumber")
386     public static LaneBasedOperationalPlan buildAccelerationLaneChangePlan(final LaneBasedGTU gtu,
387             final LateralDirectionality laneChangeDirectionality, final DirectedPoint startPosition, final Time startTime,
388             final Speed startSpeed, final Acceleration acceleration, final Duration timeStep, final LaneChange laneChange)
389             throws OperationalPlanException, OTSGeometryException
390     {
391 
392         // on first call during lane change, use laneChangeDirectionality as laneChange.getDirection() is NONE
393         // on successive calls, use laneChange.getDirection() as laneChangeDirectionality is NONE (i.e. no LC initiated)
394         LateralDirectionality direction = laneChange.isChangingLane() ? laneChange.getDirection() : laneChangeDirectionality;
395 
396         Duration brakingTime = brakingTime(acceleration, startSpeed, timeStep);
397         Length planDistance =
398                 Length.instantiateSI(startSpeed.si * brakingTime.si + .5 * acceleration.si * brakingTime.si * brakingTime.si);
399         List<Segment> segmentList = createAccelerationSegments(startSpeed, acceleration, brakingTime, timeStep);
400 
401         try
402         {
403             // get position on from lane
404             Map<Lane, Length> positions = gtu.positions(gtu.getReference());
405             DirectedLanePosition ref = gtu.getReferencePosition();
406             Iterator<Lane> iterator = ref.getLane()
407                     .accessibleAdjacentLanesPhysical(direction, gtu.getGTUType(), ref.getGtuDirection()).iterator();
408             Lane adjLane = iterator.hasNext() ? iterator.next() : null;
409             DirectedLanePosition from = null;
410             if (laneChange.getDirection() == null || (adjLane != null && positions.containsKey(adjLane)))
411             {
412                 // reference lane is from lane, this is ok
413                 from = ref;
414             }
415             else
416             {
417                 // reference lane is to lane, this should be accounted for
418                 for (Lane lane : positions.keySet())
419                 {
420                     if (lane.accessibleAdjacentLanesPhysical(direction, gtu.getGTUType(), ref.getGtuDirection())
421                             .contains(ref.getLane()))
422                     {
423                         from = new DirectedLanePosition(lane, positions.get(lane), ref.getGtuDirection());
424                         break;
425                     }
426                 }
427             }
428             Throw.when(from == null, RuntimeException.class, "From lane could not be determined during lane change.");
429 
430             // get path and make plan
431             OTSLine3D path = laneChange.getPath(timeStep, gtu, from, startPosition, planDistance, direction);
432             LaneBasedOperationalPlanan/operational/LaneBasedOperationalPlan.html#LaneBasedOperationalPlan">LaneBasedOperationalPlan plan = new LaneBasedOperationalPlan(gtu, path, startTime, startSpeed, segmentList, true);
433             return plan;
434         }
435         catch (GTUException exception)
436         {
437             throw new RuntimeException("Error during creation of lane change plan.", exception);
438         }
439     }
440 
441     /**
442      * Returns the effective braking time, which stops if stand-still is reached.
443      * @param acceleration Acceleration; acceleration
444      * @param startSpeed Speed; start speed
445      * @param time Duration; intended time step
446      * @return Duration; effective braking time
447      */
448     public static Duration brakingTime(final Acceleration acceleration, final Speed startSpeed, final Duration time)
449     {
450         if (acceleration.ge0())
451         {
452             return time;
453         }
454         double t = startSpeed.si / -acceleration.si;
455         if (t >= time.si)
456         {
457             return time;
458         }
459         return Duration.instantiateSI(t);
460     }
461 
462     /**
463      * Creates 1 or 2 segments in an operational plan. Two segments are returned of stand-still is reached within the time step.
464      * @param startSpeed Speed; start speed
465      * @param acceleration Acceleration; acceleration
466      * @param brakingTime Duration; braking time until stand-still
467      * @param timeStep Duration; time step
468      * @return 1 or 2 segments in an operational plan
469      */
470     private static List<Segment> createAccelerationSegments(final Speed startSpeed, final Acceleration acceleration,
471             final Duration brakingTime, final Duration timeStep)
472     {
473         List<Segment> segmentList = new ArrayList<>();
474         if (brakingTime.si < timeStep.si)
475         {
476             if (brakingTime.si > 0.0)
477             {
478                 segmentList.add(new OperationalPlan.AccelerationSegment(brakingTime, acceleration));
479             }
480             segmentList.add(new OperationalPlan.SpeedSegment(timeStep.minus(brakingTime)));
481         }
482         else
483         {
484             segmentList.add(new OperationalPlan.AccelerationSegment(timeStep, acceleration));
485         }
486         return segmentList;
487     }
488 
489     /**
490      * Build an operational plan based on a simple operational plan and status info.
491      * @param gtu LaneBasedGTU; gtu
492      * @param startTime Time; start time for plan
493      * @param simplePlan SimpleOperationalPlan; simple operational plan
494      * @param laneChange LaneChange; lane change status
495      * @return operational plan
496      * @throws ParameterException if parameter is not defined
497      * @throws GTUException gtu exception
498      * @throws NetworkException network exception
499      * @throws OperationalPlanException operational plan exeption
500      */
501     public static LaneBasedOperationalPlan buildPlanFromSimplePlan(final LaneBasedGTU gtu, final Time startTime,
502             final SimpleOperationalPlan simplePlan, final LaneChange laneChange)
503             throws ParameterException, GTUException, NetworkException, OperationalPlanException
504     {
505         Acceleration acc = gtu.getVehicleModel().boundAcceleration(simplePlan.getAcceleration(), gtu);
506 
507         if (gtu.isInstantaneousLaneChange())
508         {
509             if (simplePlan.isLaneChange())
510             {
511                 gtu.changeLaneInstantaneously(simplePlan.getLaneChangeDirection());
512             }
513             try
514             {
515                 return LaneOperationalPlanBuilder.buildAccelerationPlan(gtu, startTime, gtu.getSpeed(), acc,
516                         simplePlan.getDuration(), false);
517             }
518             catch (OTSGeometryException exception)
519             {
520                 throw new OperationalPlanException(exception);
521             }
522         }
523 
524         // gradual lane change
525         try
526         {
527             if (!simplePlan.isLaneChange() && !laneChange.isChangingLane())
528             {
529                 return LaneOperationalPlanBuilder.buildAccelerationPlan(gtu, startTime, gtu.getSpeed(), acc,
530                         simplePlan.getDuration(), true);
531             }
532             if (gtu.getSpeed().si == 0.0 && acc.si <= 0.0)
533             {
534                 return LaneOperationalPlanBuilder.buildAccelerationPlan(gtu, startTime, gtu.getSpeed(), acc,
535                         simplePlan.getDuration(), false);
536             }
537             return LaneOperationalPlanBuilder.buildAccelerationLaneChangePlan(gtu, simplePlan.getLaneChangeDirection(),
538                     gtu.getLocation(), startTime, gtu.getSpeed(), acc, simplePlan.getDuration(), laneChange);
539         }
540         catch (OTSGeometryException exception)
541         {
542             throw new OperationalPlanException(exception);
543         }
544     }
545 
546     /**
547      * Schedules a lane change finalization after the given distance is covered. This distance is known as the plan is created,
548      * but at that point no time can be derived as the plan is required for that. Hence, this method can be scheduled at the
549      * same time (sequentially after creation of the plan) to then schedule the actual finalization by deriving time from
550      * distance with the plan.
551      * @param gtu LaneBasedGTU; gtu
552      * @param distance Length; distance
553      * @param laneChangeDirection LateralDirectionality; lane change direction
554      * @throws SimRuntimeException on bad time
555      */
556     public static void scheduleLaneChangeFinalization(final LaneBasedGTU gtu, final Length distance,
557             final LateralDirectionality laneChangeDirection) throws SimRuntimeException
558     {
559         Time time = gtu.getOperationalPlan().timeAtDistance(distance);
560         if (Double.isNaN(time.si))
561         {
562             // rounding...
563             time = gtu.getOperationalPlan().getEndTime();
564         }
565         SimEventInterface<SimTimeDoubleUnit> event = gtu.getSimulator().scheduleEventAbs(time, (short) 6, gtu, gtu,
566                 "finalizeLaneChange", new Object[] { laneChangeDirection });
567         gtu.setFinalizeLaneChangeEvent(event);
568     }
569 
570     /**
571      * Build a plan with a path and a given start speed to try to come to a stop with a given deceleration. If the GTU can stop
572      * before completing the given path, a truncated path that ends where the GTU stops is used instead. There is no guarantee
573      * that the OperationalPlan will lead to a complete stop.
574      * @param gtu LaneBasedGTU; the GTU for debugging purposes
575      * @param distance Length; distance to drive for reaching the end speed
576      * @param startTime Time; the current time or a time in the future when the plan should start
577      * @param startSpeed Speed; the speed at the start of the path
578      * @param deceleration Acceleration; the deceleration to use if endSpeed &lt; startSpeed, provided as a NEGATIVE number
579      * @return the operational plan to accomplish the given end speed
580      * @throws OperationalPlanException when construction of the operational path fails
581      * @throws OTSGeometryException in case the lanes are not connected or firstLanePositiion is larger than the length of the
582      *             first lane
583      */
584     public static LaneBasedOperationalPlan buildStopPlan(final LaneBasedGTU gtu, final Length distance, final Time startTime,
585             final Speed startSpeed, final Acceleration deceleration) throws OperationalPlanException, OTSGeometryException
586     {
587         return buildMaximumAccelerationPlan(gtu, distance, startTime, startSpeed, new Speed(0.0, SpeedUnit.SI),
588                 new Acceleration(1.0, AccelerationUnit.SI), deceleration);
589     }
590 
591 }