1 package org.opentrafficsim.core.geometry; 2 3 import java.awt.geom.Line2D; 4 5 import org.djutils.exceptions.Throw; 6 7 /** 8 * Generation of Bézier curves. <br> 9 * The class implements the cubic(...) method to generate a cubic Bézier curve using the following formula: B(t) = (1 - 10 * t)<sup>3</sup>P<sub>0</sub> + 3t(1 - t)<sup>2</sup> P<sub>1</sub> + 3t<sup>2</sup> (1 - t) P<sub>2</sub> + t<sup>3</sup> 11 * P<sub>3</sub> where P<sub>0</sub> and P<sub>3</sub> are the end points, and P<sub>1</sub> and P<sub>2</sub> the control 12 * points. <br> 13 * For a smooth movement, one of the standard implementations if the cubic(...) function offered is the case where P<sub>1</sub> 14 * is positioned halfway between P<sub>0</sub> and P<sub>3</sub> starting from P<sub>0</sub> in the direction of P<sub>3</sub>, 15 * and P<sub>2</sub> is positioned halfway between P<sub>3</sub> and P<sub>0</sub> starting from P<sub>3</sub> in the direction 16 * of P<sub>0</sub>.<br> 17 * Finally, an n-point generalization of the Bézier curve is implemented with the bezier(...) function. 18 * <p> 19 * Copyright (c) 2013-2022 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br> 20 * BSD-style license. See <a href="http://opentrafficsim.org/docs/license.html">OpenTrafficSim License</a>. 21 * </p> 22 * $LastChangedDate: 2015-07-24 02:58:59 +0200 (Fri, 24 Jul 2015) $, @version $Revision: 1147 $, by $Author: averbraeck $, 23 * initial version Nov 14, 2015 <br> 24 * @author <a href="http://www.tbm.tudelft.nl/averbraeck">Alexander Verbraeck</a> 25 * @author <a href="http://www.tudelft.nl/pknoppers">Peter Knoppers</a> 26 */ 27 public final class Bezier 28 { 29 /** The default number of points to use to construct a Bézier curve. */ 30 private static final int DEFAULT_NUM_POINTS = 64; 31 32 /** Cached factorial values. */ 33 private static long[] fact = new long[] {1L, 1L, 2L, 6L, 24L, 120L, 720L, 5040L, 40320L, 362880L, 3628800L, 39916800L, 34 479001600L, 6227020800L, 87178291200L, 1307674368000L, 20922789888000L, 355687428096000L, 6402373705728000L, 35 121645100408832000L, 2432902008176640000L}; 36 37 /** Utility class. */ 38 private Bezier() 39 { 40 // do not instantiate 41 } 42 43 /** 44 * Construct a cubic Bézier curve from start to end with two control points. 45 * @param numPoints int; the number of points for the Bézier curve 46 * @param start OTSPoint3D; the start point of the Bézier curve 47 * @param control1 OTSPoint3D; the first control point 48 * @param control2 OTSPoint3D; the second control point 49 * @param end OTSPoint3D; the end point of the Bézier curve 50 * @return a cubic Bézier curve between start and end, with the two provided control points 51 * @throws OTSGeometryException in case the number of points is less than 2 or the Bézier curve could not be 52 * constructed 53 */ 54 public static OTSLine3D cubic(final int numPoints, final OTSPoint3D start, final OTSPoint3D control1, 55 final OTSPoint3D control2, final OTSPoint3D end) throws OTSGeometryException 56 { 57 Throw.when(numPoints < 2, OTSGeometryException.class, "Number of points too small (got %d; minimum value is 2)", 58 numPoints); 59 OTSPoint3D[] points = new OTSPoint3D[numPoints]; 60 for (int n = 0; n < numPoints; n++) 61 { 62 double t = n / (numPoints - 1.0); 63 double x = B3(t, start.x, control1.x, control2.x, end.x); 64 double y = B3(t, start.y, control1.y, control2.y, end.y); 65 double z = B3(t, start.z, control1.z, control2.z, end.z); 66 points[n] = new OTSPoint3D(x, y, z); 67 } 68 return new OTSLine3D(points); 69 } 70 71 /** 72 * Construct a cubic Bézier curve from start to end with two generated control points at half the distance between 73 * start and end. The z-value is interpolated in a linear way. 74 * @param numPoints int; the number of points for the Bézier curve 75 * @param start DirectedPoint; the directed start point of the Bézier curve 76 * @param end DirectedPoint; the directed end point of the Bézier curve 77 * @return a cubic Bézier curve between start and end, with the two provided control points 78 * @throws OTSGeometryException in case the number of points is less than 2 or the Bézier curve could not be 79 * constructed 80 */ 81 public static OTSLine3D cubic(final int numPoints, final DirectedPoint start, final DirectedPoint end) 82 throws OTSGeometryException 83 { 84 return cubic(numPoints, start, end, 1.0); 85 } 86 87 /** 88 * Construct a cubic Bézier curve from start to end with two generated control points at half the distance between 89 * start and end. The z-value is interpolated in a linear way. 90 * @param numPoints int; the number of points for the Bézier curve 91 * @param start DirectedPoint; the directed start point of the Bézier curve 92 * @param end DirectedPoint; the directed end point of the Bézier curve 93 * @param shape shape factor; 1 = control points at half the distance between start and end, > 1 results in a pointier 94 * shape, < 1 results in a flatter shape, value should be above 0 95 * @return a cubic Bézier curve between start and end, with the two determined control points 96 * @throws OTSGeometryException in case the number of points is less than 2 or the Bézier curve could not be 97 * constructed 98 */ 99 public static OTSLine3D cubic(final int numPoints, final DirectedPoint start, final DirectedPoint end, final double shape) 100 throws OTSGeometryException 101 { 102 return cubic(numPoints, start, end, shape, false); 103 } 104 105 /** 106 * Construct a cubic Bézier curve from start to end with two generated control points at half the distance between 107 * start and end. The z-value is interpolated in a linear way. 108 * @param numPoints int; the number of points for the Bézier curve 109 * @param start DirectedPoint; the directed start point of the Bézier curve 110 * @param end DirectedPoint; the directed end point of the Bézier curve 111 * @param shape shape factor; 1 = control points at half the distance between start and end, > 1 results in a pointier 112 * shape, < 1 results in a flatter shape, value should be above 0 113 * @param weighted boolean; control point distance relates to distance to projected point on extended line from other end 114 * @return a cubic Bézier curve between start and end, with the two determined control points 115 * @throws OTSGeometryException in case the number of points is less than 2 or the Bézier curve could not be 116 * constructed 117 */ 118 public static OTSLine3D cubic(final int numPoints, final DirectedPoint start, final DirectedPoint end, final double shape, 119 final boolean weighted) throws OTSGeometryException 120 { 121 OTSPoint3D control1; 122 OTSPoint3D control2; 123 124 if (weighted) 125 { 126 // each control point is 'w' * the distance between the end-points away from the respective end point 127 // 'w' is a weight given by the distance from the end point to the extended line of the other end point 128 double distance = shape * Math.sqrt((end.x - start.x) * (end.x - start.x) + (end.y - start.y) * (end.y - start.y)); 129 double cosEnd = Math.cos(end.getRotZ()); 130 double sinEnd = Math.sin(end.getRotZ()); 131 double dStart = Line2D.ptLineDist(end.x, end.y, end.x + cosEnd, end.y + sinEnd, start.x, start.y); 132 double cosStart = Math.cos(start.getRotZ()); 133 double sinStart = Math.sin(start.getRotZ()); 134 double dEnd = Line2D.ptLineDist(start.x, start.y, start.x + cosStart, start.y + sinStart, end.x, end.y); 135 double wStart = dStart / (dStart + dEnd); 136 double wEnd = dEnd / (dStart + dEnd); 137 double wStartDistance = wStart * distance; 138 double wEndDistance = wEnd * distance; 139 control1 = new OTSPoint3D(start.x + wStartDistance * cosStart, start.y + wStartDistance * sinStart); 140 // - (minus) as the angle is where the line leaves, i.e. from shape point to end 141 control2 = new OTSPoint3D(end.x - wEndDistance * cosEnd, end.y - wEndDistance * sinEnd); 142 } 143 else 144 { 145 // each control point is half the distance between the end-points away from the respective end point 146 double distance2 = 147 shape * Math.sqrt((end.x - start.x) * (end.x - start.x) + (end.y - start.y) * (end.y - start.y)) / 2.0; 148 control1 = new OTSPoint3D(start.x + distance2 * Math.cos(start.getRotZ()), 149 start.y + distance2 * Math.sin(start.getRotZ()), start.z); 150 control2 = new OTSPoint3D(end.x - distance2 * Math.cos(end.getRotZ()), end.y - distance2 * Math.sin(end.getRotZ()), 151 end.z); 152 } 153 154 // Limit control points to not intersect with the other (infinite) line 155 OTSPoint3D s = new OTSPoint3D(start); 156 OTSPoint3D e = new OTSPoint3D(end); 157 158 // return cubic(numPoints, new OTSPoint3D(start), control1, control2, new OTSPoint3D(end)); 159 return bezier(numPoints, s, control1, control2, e); 160 } 161 162 /** 163 * Construct a cubic Bézier curve from start to end with two generated control points at half the distance between 164 * start and end. The z-value is interpolated in a linear way. 165 * @param start DirectedPoint; the directed start point of the Bézier curve 166 * @param end DirectedPoint; the directed end point of the Bézier curve 167 * @return a cubic Bézier curve between start and end, with the two provided control points 168 * @throws OTSGeometryException in case the number of points is less than 2 or the Bézier curve could not be 169 * constructed 170 */ 171 public static OTSLine3D cubic(final DirectedPoint start, final DirectedPoint end) throws OTSGeometryException 172 { 173 return cubic(DEFAULT_NUM_POINTS, start, end); 174 } 175 176 /** 177 * Calculate the cubic Bézier point with B(t) = (1 - t)<sup>3</sup>P<sub>0</sub> + 3t(1 - t)<sup>2</sup> 178 * P<sub>1</sub> + 3t<sup>2</sup> (1 - t) P<sub>2</sub> + t<sup>3</sup> P<sub>3</sub>. 179 * @param t double; the fraction 180 * @param p0 double; the first point of the curve 181 * @param p1 double; the first control point 182 * @param p2 double; the second control point 183 * @param p3 double; the end point of the curve 184 * @return the cubic bezier value B(t) 185 */ 186 @SuppressWarnings("checkstyle:methodname") 187 private static double B3(final double t, final double p0, final double p1, final double p2, final double p3) 188 { 189 double t2 = t * t; 190 double t3 = t2 * t; 191 double m = (1.0 - t); 192 double m2 = m * m; 193 double m3 = m2 * m; 194 return m3 * p0 + 3.0 * t * m2 * p1 + 3.0 * t2 * m * p2 + t3 * p3; 195 } 196 197 /** 198 * Construct a Bézier curve of degree n. 199 * @param numPoints int; the number of points for the Bézier curve to be constructed 200 * @param points OTSPoint3D...; the points of the curve, where the first and last are begin and end point, and the 201 * intermediate ones are control points. There should be at least two points. 202 * @return the Bézier value B(t) of degree n, where n is the number of points in the array 203 * @throws OTSGeometryException in case the number of points is less than 2 or the Bézier curve could not be 204 * constructed 205 */ 206 public static OTSLine3D bezier(final int numPoints, final OTSPoint3D... points) throws OTSGeometryException 207 { 208 OTSPoint3D[] result = new OTSPoint3D[numPoints]; 209 double[] px = new double[points.length]; 210 double[] py = new double[points.length]; 211 double[] pz = new double[points.length]; 212 for (int i = 0; i < points.length; i++) 213 { 214 px[i] = points[i].x; 215 py[i] = points[i].y; 216 pz[i] = points[i].z; 217 } 218 for (int n = 0; n < numPoints; n++) 219 { 220 double t = n / (numPoints - 1.0); 221 double x = Bn(t, px); 222 double y = Bn(t, py); 223 double z = Bn(t, pz); 224 result[n] = new OTSPoint3D(x, y, z); 225 } 226 return new OTSLine3D(result); 227 } 228 229 /** 230 * Construct a Bézier curve of degree n. 231 * @param points OTSPoint3D...; the points of the curve, where the first and last are begin and end point, and the 232 * intermediate ones are control points. There should be at least two points. 233 * @return the Bézier value B(t) of degree n, where n is the number of points in the array 234 * @throws OTSGeometryException in case the number of points is less than 2 or the Bézier curve could not be 235 * constructed 236 */ 237 public static OTSLine3D bezier(final OTSPoint3D... points) throws OTSGeometryException 238 { 239 return bezier(DEFAULT_NUM_POINTS, points); 240 } 241 242 /** 243 * Calculate the Bézier point of degree n, with B(t) = Sum(i = 0..n) [C(n, i) * (1 - t)<sup>n-i</sup> t<sup>i</sup> 244 * P<sub>i</sub>], where C(n, k) is the binomial coefficient defined by n! / ( k! (n-k)! ), ! being the factorial operator. 245 * @param t double; the fraction 246 * @param p double...; the points of the curve, where the first and last are begin and end point, and the intermediate ones 247 * are control points 248 * @return the Bézier value B(t) of degree n, where n is the number of points in the array 249 */ 250 @SuppressWarnings("checkstyle:methodname") 251 private static double Bn(final double t, final double... p) 252 { 253 double b = 0.0; 254 double m = (1.0 - t); 255 int n = p.length - 1; 256 double fn = factorial(n); 257 for (int i = 0; i <= n; i++) 258 { 259 double c = fn / (factorial(i) * (factorial(n - i))); 260 b += c * Math.pow(m, n - i) * Math.pow(t, i) * p[i]; 261 } 262 return b; 263 } 264 265 /** 266 * Calculate factorial(k), which is k * (k-1) * (k-2) * ... * 1. For factorials up to 20, a lookup table is used. 267 * @param k int; the parameter 268 * @return factorial(k) 269 */ 270 private static double factorial(final int k) 271 { 272 if (k < fact.length) 273 { 274 return fact[k]; 275 } 276 double f = 1; 277 for (int i = 2; i <= k; i++) 278 { 279 f = f * i; 280 } 281 return f; 282 } 283 284 }