View Javadoc
1   package org.opentrafficsim.draw.graphs;
2   
3   import java.util.ArrayList;
4   import java.util.Arrays;
5   import java.util.LinkedHashMap;
6   import java.util.LinkedHashSet;
7   import java.util.List;
8   import java.util.Map;
9   import java.util.Set;
10  
11  import org.djunits.unit.SpeedUnit;
12  import org.djunits.value.vdouble.scalar.Duration;
13  import org.djunits.value.vdouble.scalar.Length;
14  import org.djunits.value.vdouble.scalar.Speed;
15  import org.djunits.value.vdouble.scalar.Time;
16  import org.djutils.exceptions.Throw;
17  import org.djutils.logger.CategoryLogger;
18  import org.opentrafficsim.draw.egtf.Converter;
19  import org.opentrafficsim.draw.egtf.DataSource;
20  import org.opentrafficsim.draw.egtf.DataStream;
21  import org.opentrafficsim.draw.egtf.Egtf;
22  import org.opentrafficsim.draw.egtf.EgtfEvent;
23  import org.opentrafficsim.draw.egtf.EgtfListener;
24  import org.opentrafficsim.draw.egtf.Filter;
25  import org.opentrafficsim.draw.egtf.Quantity;
26  import org.opentrafficsim.draw.egtf.typed.TypedQuantity;
27  import org.opentrafficsim.draw.graphs.GraphPath.Section;
28  import org.opentrafficsim.kpi.interfaces.LaneData;
29  import org.opentrafficsim.kpi.sampling.SamplerData;
30  import org.opentrafficsim.kpi.sampling.Trajectory;
31  import org.opentrafficsim.kpi.sampling.Trajectory.SpaceTimeView;
32  import org.opentrafficsim.kpi.sampling.TrajectoryGroup;
33  
34  /**
35   * Class that contains data for contour plots. One data source can be shared between contour plots, in which case the
36   * granularity, path, sampler, update interval, and whether the data is smoothed (EGTF) are equal between the plots.
37   * <p>
38   * By default the source contains traveled time and traveled distance per cell.
39   * <p>
40   * Copyright (c) 2013-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
41   * BSD-style license. See <a href="https://opentrafficsim.org/docs/license.html">OpenTrafficSim License</a>.
42   * </p>
43   * @author <a href="https://github.com/averbraeck">Alexander Verbraeck</a>
44   * @author <a href="https://tudelft.nl/staff/p.knoppers-1">Peter Knoppers</a>
45   * @author <a href="https://github.com/wjschakel">Wouter Schakel</a>
46   */
47  public class ContourDataSource
48  {
49  
50      // *************************
51      // *** GLOBAL PROPERTIES ***
52      // *************************
53  
54      /** Space granularity values. */
55      protected static final double[] DEFAULT_SPACE_GRANULARITIES = {10, 20, 50, 100, 200, 500, 1000};
56  
57      /** Index of the initial space granularity. */
58      protected static final int DEFAULT_SPACE_GRANULARITY_INDEX = 3;
59  
60      /** Time granularity values. */
61      protected static final double[] DEFAULT_TIME_GRANULARITIES = {1, 2, 5, 10, 20, 30, 60, 120, 300, 600};
62  
63      /** Index of the initial time granularity. */
64      protected static final int DEFAULT_TIME_GRANULARITY_INDEX = 3;
65  
66      /** Initial lower bound for the time scale. */
67      protected static final Time DEFAULT_LOWER_TIME_BOUND = Time.ZERO;
68  
69      /**
70       * Total kernel size relative to sigma and tau. This factor is determined through -log(1 - p) with p ~= 99%. This means that
71       * the cumulative exponential distribution has 99% at 5 times sigma or tau. Note that due to a coordinate change in the
72       * Adaptive Smoothing Method, the actual cumulative distribution is slightly different. Hence, this is just a heuristic.
73       */
74      private static final int KERNEL_FACTOR = 5;
75  
76      /** Spatial kernel size. Larger value may be used when using a large granularity. */
77      private static final Length SIGMA = Length.instantiateSI(300);
78  
79      /** Temporal kernel size. Larger value may be used when using a large granularity. */
80      private static final Duration TAU = Duration.instantiateSI(30);
81  
82      /** Maximum free flow propagation speed. */
83      private static final Speed MAX_C_FREE = new Speed(80.0, SpeedUnit.KM_PER_HOUR);
84  
85      /** Factor on speed limit to determine vc, the flip over speed between congestion and free flow. */
86      private static final double VC_FACRTOR = 0.8;
87  
88      /** Congestion propagation speed. */
89      private static final Speed C_CONG = new Speed(-18.0, SpeedUnit.KM_PER_HOUR);
90  
91      /** Delta v, speed transition region around threshold. */
92      private static final Speed DELTA_V = new Speed(10.0, SpeedUnit.KM_PER_HOUR);
93  
94      // *****************************
95      // *** CONTEXTUAL PROPERTIES ***
96      // *****************************
97  
98      /** Sampler data. */
99      private final SamplerData<?> samplerData;
100 
101     /** Update interval. */
102     private final Duration updateInterval;
103 
104     /** Delay so critical future events have occurred, e.g. GTU's next move's to extend trajectories. */
105     private final Duration delay;
106 
107     /** Path. */
108     private final GraphPath<? extends LaneData<?>> path;
109 
110     /** Space axis. */
111     final Axis spaceAxis;
112 
113     /** Time axis. */
114     final Axis timeAxis;
115 
116     /** Registered plots. */
117     private Set<AbstractContourPlot<?>> plots = new LinkedHashSet<>();
118 
119     // *****************
120     // *** PLOT DATA ***
121     // *****************
122 
123     /** Total distance traveled per cell. */
124     private float[][] distance;
125 
126     /** Total time traveled per cell. */
127     private float[][] time;
128 
129     /** Data of other types. */
130     private final Map<ContourDataType<?, ?>, float[][]> additionalData = new LinkedHashMap<>();
131 
132     // ****************************
133     // *** SMOOTHING PROPERTIES ***
134     // ****************************
135 
136     /** Free flow propagation speed. */
137     private Speed cFree;
138 
139     /** Flip-over speed between congestion and free flow. */
140     private Speed vc;
141 
142     /** Smoothing filter. */
143     private Egtf egtf;
144 
145     /** Data stream for speed. */
146     private DataStream<Speed> speedStream;
147 
148     /** Data stream for travel time. */
149     private DataStream<Duration> travelTimeStream;
150 
151     /** Data stream for travel distance. */
152     private DataStream<Length> travelDistanceStream;
153 
154     /** Quantity for travel time. */
155     private final Quantity<Duration, double[][]> travelTimeQuantity = new Quantity<>("travel time", Converter.SI);
156 
157     /** Quantity for travel distance. */
158     private final Quantity<Length, double[][]> travelDistanceQuantity = new Quantity<>("travel distance", Converter.SI);
159 
160     /** Data streams for any additional data. */
161     private Map<ContourDataType<?, ?>, DataStream<?>> additionalStreams = new LinkedHashMap<>();
162 
163     // *****************************
164     // *** CONTINUITY PROPERTIES ***
165     // *****************************
166 
167     /** Updater for update times. */
168     private final GraphUpdater<Time> graphUpdater;
169 
170     /** Whether any command since or during the last update asks for a complete redo. */
171     private boolean redo = true;
172 
173     /** Time up to which to determine data. This is a multiple of the update interval, which is now, or recent on a redo. */
174     private Time toTime;
175 
176     /** Number of items that are ready. To return NaN values if not ready, and for operations between consecutive updates. */
177     private int readyItems = -1;
178 
179     /** Selected space granularity, to be set and taken on the next update. */
180     private Double desiredSpaceGranularity = null;
181 
182     /** Selected time granularity, to be set and taken on the next update. */
183     private Double desiredTimeGranularity = null;
184 
185     /** Whether to smooth data. */
186     private boolean smooth = false;
187 
188     // ********************
189     // *** CONSTRUCTORS ***
190     // ********************
191 
192     /**
193      * Constructor using default granularities.
194      * @param samplerData SamplerData&lt;?&gt;; sampler data
195      * @param path GraphPath&lt;? extends LaneData&gt;; path
196      */
197     public ContourDataSource(final SamplerData<?> samplerData, final GraphPath<? extends LaneData<?>> path)
198     {
199         this(samplerData, Duration.instantiateSI(1.0), path, DEFAULT_SPACE_GRANULARITIES, DEFAULT_SPACE_GRANULARITY_INDEX,
200                 DEFAULT_TIME_GRANULARITIES, DEFAULT_TIME_GRANULARITY_INDEX, DEFAULT_LOWER_TIME_BOUND,
201                 AbstractPlot.DEFAULT_INITIAL_UPPER_TIME_BOUND);
202     }
203 
204     /**
205      * Constructor for non-default input.
206      * @param samplerData SamplerData&lt;?&gt;; sampler data
207      * @param delay Duration; delay so critical future events have occurred, e.g. GTU's next move's to extend trajectories
208      * @param path GraphPath&lt;? extends LaneData&gt;; path
209      * @param spaceGranularity double[]; granularity options for space dimension
210      * @param initSpaceIndex int; initial selected space granularity
211      * @param timeGranularity double[]; granularity options for time dimension
212      * @param initTimeIndex int; initial selected time granularity
213      * @param start Time; start time
214      * @param initialEnd Time; initial end time of plots, will be expanded if simulation time exceeds it
215      */
216     @SuppressWarnings("parameternumber")
217     public ContourDataSource(final SamplerData<?> samplerData, final Duration delay, final GraphPath<? extends LaneData<?>> path,
218             final double[] spaceGranularity, final int initSpaceIndex, final double[] timeGranularity, final int initTimeIndex,
219             final Time start, final Time initialEnd)
220     {
221         this.samplerData = samplerData;
222         this.updateInterval = Duration.instantiateSI(timeGranularity[initTimeIndex]);
223         this.delay = delay;
224         this.path = path;
225         this.spaceAxis = new Axis(0.0, path.getTotalLength().si, spaceGranularity[initSpaceIndex], spaceGranularity);
226         this.timeAxis = new Axis(start.si, initialEnd.si, timeGranularity[initTimeIndex], timeGranularity);
227 
228         // get length-weighted mean speed limit from path to determine cFree and Vc for smoothing
229         this.cFree = Speed.min(path.getSpeedLimit(), MAX_C_FREE);
230         this.vc = Speed.min(path.getSpeedLimit().times(VC_FACRTOR), MAX_C_FREE);
231 
232         // setup updater to do the actual work in another thread
233         this.graphUpdater = new GraphUpdater<>("Contour Data Source worker", Thread.currentThread(), (t) -> update(t));
234     }
235 
236     // ************************************
237     // *** PLOT INTERFACING AND GETTERS ***
238     // ************************************
239 
240     /**
241      * Returns the sampler data for an {@code AbstractContourPlot} using this {@code ContourDataSource}.
242      * @return SamplerData&lt;?&gt;; the sampler
243      */
244     public final SamplerData<?> getSamplerData()
245     {
246         return this.samplerData;
247     }
248 
249     /**
250      * Returns the update interval for an {@code AbstractContourPlot} using this {@code ContourDataSource}.
251      * @return Duration; update interval
252      */
253     final Duration getUpdateInterval()
254     {
255         return this.updateInterval;
256     }
257 
258     /**
259      * Returns the delay for an {@code AbstractContourPlot} using this {@code ContourDataSource}.
260      * @return Duration; delay
261      */
262     final Duration getDelay()
263     {
264         return this.delay;
265     }
266 
267     /**
268      * Returns the path for an {@code AbstractContourPlot} using this {@code ContourDataSource}.
269      * @return GraphPath&lt;? extends LaneData&gt;; the path
270      */
271     final GraphPath<? extends LaneData<?>> getPath()
272     {
273         return this.path;
274     }
275 
276     /**
277      * Register a contour plot to this data pool. The contour constructor will do this.
278      * @param contourPlot AbstractContourPlot&lt;?&gt;; contour plot
279      */
280     final void registerContourPlot(final AbstractContourPlot<?> contourPlot)
281     {
282         ContourDataType<?, ?> contourDataType = contourPlot.getContourDataType();
283         if (contourDataType != null)
284         {
285             this.additionalData.put(contourDataType, null);
286         }
287         this.plots.add(contourPlot);
288     }
289 
290     /**
291      * Returns the bin count.
292      * @param dimension Dimension; space or time
293      * @return int; bin count
294      */
295     final int getBinCount(final Dimension dimension)
296     {
297         return dimension.getAxis(this).getBinCount();
298     }
299 
300     /**
301      * Returns the size of a bin. Usually this is equal to the granularity, except for the last which is likely smaller.
302      * @param dimension Dimension; space or time
303      * @param item int; item number (cell number in contour plot)
304      * @return double; the size of a bin
305      */
306     final synchronized double getBinSize(final Dimension dimension, final int item)
307     {
308         int n = dimension.equals(Dimension.DISTANCE) ? getSpaceBin(item) : getTimeBin(item);
309         double[] ticks = dimension.getAxis(this).getTicks();
310         return ticks[n + 1] - ticks[n];
311     }
312 
313     /**
314      * Returns the value on the axis of an item.
315      * @param dimension Dimension; space or time
316      * @param item int; item number (cell number in contour plot)
317      * @return double; the value on the axis of this item
318      */
319     final double getAxisValue(final Dimension dimension, final int item)
320     {
321         if (dimension.equals(Dimension.DISTANCE))
322         {
323             return this.spaceAxis.getBinValue(getSpaceBin(item));
324         }
325         return this.timeAxis.getBinValue(getTimeBin(item));
326     }
327 
328     /**
329      * Returns the axis bin number of the given value.
330      * @param dimension Dimension; space or time
331      * @param value double; value
332      * @return int; axis bin number of the given value
333      */
334     final int getAxisBin(final Dimension dimension, final double value)
335     {
336         if (dimension.equals(Dimension.DISTANCE))
337         {
338             return this.spaceAxis.getValueBin(value);
339         }
340         return this.timeAxis.getValueBin(value);
341     }
342 
343     /**
344      * Returns the available granularities that a linked plot may use.
345      * @param dimension Dimension; space or time
346      * @return double[]; available granularities that a linked plot may use
347      */
348     @SuppressWarnings("synthetic-access")
349     public final double[] getGranularities(final Dimension dimension)
350     {
351         return dimension.getAxis(this).granularities;
352     }
353 
354     /**
355      * Returns the selected granularity that a linked plot should use.
356      * @param dimension Dimension; space or time
357      * @return double; granularity that a linked plot should use
358      */
359     @SuppressWarnings("synthetic-access")
360     public final double getGranularity(final Dimension dimension)
361     {
362         return dimension.getAxis(this).granularity;
363     }
364 
365     /**
366      * Called by {@code AbstractContourPlot} to update the time. This will invalidate the plot triggering a redraw.
367      * @param updateTime Time; current time
368      */
369     @SuppressWarnings("synthetic-access")
370     final synchronized void increaseTime(final Time updateTime)
371     {
372         if (updateTime.si > this.timeAxis.maxValue)
373         {
374             this.timeAxis.setMaxValue(updateTime.si);
375             for (AbstractContourPlot<?> plot : this.plots)
376             {
377                 plot.setUpperDomainBound(updateTime.si);
378             }
379         }
380         if (this.toTime == null || updateTime.si > this.toTime.si) // null at initialization
381         {
382             invalidate(updateTime);
383         }
384     }
385 
386     /**
387      * Sets the granularity of the plot. This will invalidate the plot triggering a redraw.
388      * @param dimension Dimension; space or time
389      * @param granularity double; granularity in space or time (SI unit)
390      */
391     public final synchronized void setGranularity(final Dimension dimension, final double granularity)
392     {
393         if (dimension.equals(Dimension.DISTANCE))
394         {
395             this.desiredSpaceGranularity = granularity;
396             for (AbstractContourPlot<?> contourPlot : ContourDataSource.this.plots)
397             {
398                 contourPlot.setSpaceGranularity(granularity);
399             }
400         }
401         else
402         {
403             this.desiredTimeGranularity = granularity;
404             for (AbstractContourPlot<?> contourPlot : ContourDataSource.this.plots)
405             {
406                 contourPlot.setUpdateInterval(Duration.instantiateSI(granularity));
407                 contourPlot.setTimeGranularity(granularity);
408             }
409         }
410         invalidate(null);
411     }
412 
413     /**
414      * Sets bi-linear interpolation enabled or disabled. This will invalidate the plot triggering a redraw.
415      * @param interpolate boolean; whether to enable interpolation
416      */
417     @SuppressWarnings("synthetic-access")
418     public final void setInterpolate(final boolean interpolate)
419     {
420         if (this.timeAxis.interpolate != interpolate)
421         {
422             synchronized (this)
423             {
424                 this.timeAxis.setInterpolate(interpolate);
425                 this.spaceAxis.setInterpolate(interpolate);
426                 for (AbstractContourPlot<?> contourPlot : ContourDataSource.this.plots)
427                 {
428                     contourPlot.setInterpolation(interpolate);
429                 }
430                 invalidate(null);
431             }
432         }
433     }
434 
435     /**
436      * Sets the adaptive smoothing enabled or disabled. This will invalidate the plot triggering a redraw.
437      * @param smooth boolean; whether to smooth the plor
438      */
439     public final void setSmooth(final boolean smooth)
440     {
441         if (this.smooth != smooth)
442         {
443             synchronized (this)
444             {
445                 this.smooth = smooth;
446                 invalidate(null);
447             }
448         }
449     }
450 
451     // ************************
452     // *** UPDATING METHODS ***
453     // ************************
454 
455     /**
456      * Each method that changes a setting such that the plot is no longer valid, should call this method after the setting was
457      * changed. If time is updated (increased), it should be given as input in to this method. The given time <i>should</i> be
458      * {@code null} if the plot is not valid for any other reason. In this case a full redo is initiated.
459      * <p>
460      * Every method calling this method should be {@code synchronized}, at least for the part where the setting is changed and
461      * this method is called. This method will in all cases add an update request to the updater, working in another thread. It
462      * will invoke method {@code update()}. That method utilizes a synchronized block to obtain all synchronization sensitive
463      * data, before starting the actual work.
464      * @param t Time; time up to which to show data
465      */
466     private synchronized void invalidate(final Time t)
467     {
468         if (t != null)
469         {
470             this.toTime = t;
471         }
472         else
473         {
474             this.redo = true;
475         }
476         if (this.toTime != null) // null at initialization
477         {
478             // either a later time was set, or time was null and a redo is required (will be picked up through the redo field)
479             // note that we cannot set {@code null}, hence we set the current to time, which may or may not have just changed
480             this.graphUpdater.offer(this.toTime);
481         }
482     }
483 
484     /**
485      * Heart of the data pool. This method is invoked regularly by the "DataPool worker" thread, as scheduled in a queue through
486      * planned updates at an interval, or by user action changing the plot appearance. No two invocations can happen at the same
487      * time, as the "DataPool worker" thread executes this method before the next update request from the queue is considered.
488      * <p>
489      * This method regularly checks conditions that indicate the update should be interrupted as for example a setting has
490      * changed and appearance should change. Whenever a new invalidation causes {@code redo = true}, this method can stop as the
491      * full data needs to be recalculated. This can be set by any change of e.g. granularity or smoothing, during the update.
492      * <p>
493      * During the data recalculation, a later update time may also trigger this method to stop, while the next update will pick
494      * up where this update left off. During the smoothing this method doesn't stop for an increased update time, as that will
495      * leave a gap in the smoothed data. Note that smoothing either smoothes all data (when {@code redo = true}), or only the
496      * last part that falls within the kernel.
497      * @param t Time; time up to which to show data
498      */
499     @SuppressWarnings({"synthetic-access", "methodlength"})
500     private void update(final Time t)
501     {
502         Throw.when(this.plots.isEmpty(), IllegalStateException.class, "ContourDataSource is used, but not by a contour plot!");
503 
504         if (t.si < this.toTime.si)
505         {
506             // skip this update as new updates were commanded, while this update was in the queue, and a previous was running
507             return;
508         }
509 
510         /**
511          * This method is executed once at a time by the worker Thread. Many properties, such as the data, are maintained by
512          * this method. Other properties, which other methods can change, are read first in a synchronized block, while those
513          * methods are also synchronized.
514          */
515         boolean redo0;
516         boolean smooth0;
517         boolean interpolate0;
518         double timeGranularity;
519         double spaceGranularity;
520         double[] spaceTicks;
521         double[] timeTicks;
522         int fromSpaceIndex = 0;
523         int fromTimeIndex = 0;
524         int toTimeIndex;
525         double tFromEgtf = 0;
526         int nFromEgtf = 0;
527         synchronized (this)
528         {
529             // save local copies so commands given during this execution can change it for the next execution
530             redo0 = this.redo;
531             smooth0 = this.smooth;
532             interpolate0 = this.timeAxis.interpolate;
533             // timeTicks may be longer than the simulation time, so we use the time bin for the required time of data
534             if (this.desiredTimeGranularity != null)
535             {
536                 this.timeAxis.setGranularity(this.desiredTimeGranularity);
537                 this.desiredTimeGranularity = null;
538             }
539             if (this.desiredSpaceGranularity != null)
540             {
541                 this.spaceAxis.setGranularity(this.desiredSpaceGranularity);
542                 this.desiredSpaceGranularity = null;
543             }
544             timeGranularity = this.timeAxis.granularity;
545             spaceGranularity = this.spaceAxis.granularity;
546             spaceTicks = this.spaceAxis.getTicks();
547             timeTicks = this.timeAxis.getTicks();
548             if (!redo0)
549             {
550                 // remember where we started, readyItems will be updated but we need to know where we started during the update
551                 fromSpaceIndex = getSpaceBin(this.readyItems + 1);
552                 fromTimeIndex = getTimeBin(this.readyItems + 1);
553             }
554             toTimeIndex = ((int) (t.si / timeGranularity)) - (interpolate0 ? 0 : 1);
555             if (smooth0)
556             {
557                 // time of current bin - kernel size, get bin of that time, get time (middle) of that bin
558                 tFromEgtf = this.timeAxis.getBinValue(redo0 ? 0 : this.timeAxis.getValueBin(
559                         this.timeAxis.getBinValue(fromTimeIndex) - Math.max(TAU.si, timeGranularity / 2) * KERNEL_FACTOR));
560                 nFromEgtf = this.timeAxis.getValueBin(tFromEgtf);
561             }
562             // starting execution, so reset redo trigger which any next command may set to true if needed
563             this.redo = false;
564         }
565 
566         // reset upon a redo
567         if (redo0)
568         {
569             this.readyItems = -1;
570 
571             // init all data arrays
572             int nSpace = spaceTicks.length - 1;
573             int nTime = timeTicks.length - 1;
574             this.distance = new float[nSpace][nTime];
575             this.time = new float[nSpace][nTime];
576             for (ContourDataType<?, ?> contourDataType : this.additionalData.keySet())
577             {
578                 this.additionalData.put(contourDataType, new float[nSpace][nTime]);
579             }
580 
581             // setup the smoothing filter
582             if (smooth0)
583             {
584                 // create the filter
585                 this.egtf = new Egtf(C_CONG.si, this.cFree.si, DELTA_V.si, this.vc.si);
586 
587                 // create data source and its data streams for speed, distance traveled, time traveled, and additional
588                 DataSource generic = this.egtf.getDataSource("generic");
589                 generic.addStream(TypedQuantity.SPEED, Speed.instantiateSI(1.0), Speed.instantiateSI(1.0));
590                 generic.addStreamSI(this.travelTimeQuantity, 1.0, 1.0);
591                 generic.addStreamSI(this.travelDistanceQuantity, 1.0, 1.0);
592                 this.speedStream = generic.getStream(TypedQuantity.SPEED);
593                 this.travelTimeStream = generic.getStream(this.travelTimeQuantity);
594                 this.travelDistanceStream = generic.getStream(this.travelDistanceQuantity);
595                 for (ContourDataType<?, ?> contourDataType : this.additionalData.keySet())
596                 {
597                     this.additionalStreams.put(contourDataType, generic.addStreamSI(contourDataType.getQuantity(), 1.0, 1.0));
598                 }
599 
600                 // in principle we use sigma and tau, unless the data is so rough, we need more (granularity / 2).
601                 double tau2 = Math.max(TAU.si, timeGranularity / 2);
602                 double sigma2 = Math.max(SIGMA.si, spaceGranularity / 2);
603                 // for maximum space and time range, increase sigma and tau by KERNEL_FACTOR, beyond which both kernels diminish
604                 this.egtf.setGaussKernelSI(sigma2 * KERNEL_FACTOR, tau2 * KERNEL_FACTOR, sigma2, tau2);
605 
606                 // add listener to provide a filter status update and to possibly stop the filter when the plot is invalidated
607                 this.egtf.addListener(new EgtfListener()
608                 {
609                     /** {@inheritDoc} */
610                     @Override
611                     public void notifyProgress(final EgtfEvent event)
612                     {
613                         // check stop (explicit use of property, not locally stored value)
614                         if (ContourDataSource.this.redo)
615                         {
616                             // plots need to be redone
617                             event.interrupt(); // stop the EGTF
618                         }
619                     }
620                 });
621             }
622         }
623 
624         // discard any data from smoothing if we are not smoothing
625         if (!smooth0)
626         {
627             // free for garbage collector to remove the data
628             this.egtf = null;
629             this.speedStream = null;
630             this.travelTimeStream = null;
631             this.travelDistanceStream = null;
632             this.additionalStreams.clear();
633         }
634 
635         // ensure capacity
636         for (int i = 0; i < this.distance.length; i++)
637         {
638             this.distance[i] = GraphUtil.ensureCapacity(this.distance[i], toTimeIndex + 1);
639             this.time[i] = GraphUtil.ensureCapacity(this.time[i], toTimeIndex + 1);
640             for (float[][] additional : this.additionalData.values())
641             {
642                 additional[i] = GraphUtil.ensureCapacity(additional[i], toTimeIndex + 1);
643             }
644         }
645 
646         // loop cells to update data
647         for (int j = fromTimeIndex; j <= toTimeIndex; j++)
648         {
649             Time tFrom = Time.instantiateSI(timeTicks[j]);
650             Time tTo = Time.instantiateSI(timeTicks[j + 1]);
651 
652             // we never filter time, time always spans the entire simulation, it will contain tFrom till tTo
653 
654             for (int i = fromSpaceIndex; i < spaceTicks.length - 1; i++)
655             {
656                 // when interpolating, set the first row and column to NaN so colors representing 0 do not mess up the edges
657                 if ((j == 0 || i == 0) && interpolate0)
658                 {
659                     this.distance[i][j] = Float.NaN;
660                     this.time[i][j] = Float.NaN;
661                     this.readyItems++;
662                     continue;
663                 }
664 
665                 // only first loop with offset, later in time, none of the space was done in the previous update
666                 fromSpaceIndex = 0;
667                 Length xFrom = Length.instantiateSI(spaceTicks[i]);
668                 Length xTo = Length.instantiateSI(Math.min(spaceTicks[i + 1], this.path.getTotalLength().si));
669 
670                 // init cell data
671                 double totalDistance = 0.0;
672                 double totalTime = 0.0;
673                 Map<ContourDataType<?, ?>, Object> additionalIntermediate = new LinkedHashMap<>();
674                 for (ContourDataType<?, ?> contourDataType : this.additionalData.keySet())
675                 {
676                     additionalIntermediate.put(contourDataType, contourDataType.identity());
677                 }
678 
679                 // aggregate series in cell
680                 for (int series = 0; series < this.path.getNumberOfSeries(); series++)
681                 {
682                     // obtain trajectories
683                     List<TrajectoryGroup<?>> trajectories = new ArrayList<>();
684                     for (Section<? extends LaneData<?>> section : getPath().getSections())
685                     {
686                         TrajectoryGroup<?> trajectoryGroup = this.samplerData.getTrajectoryGroup(section.getSource(series));
687                         if (null == trajectoryGroup)
688                         {
689                             CategoryLogger.always().error("trajectoryGroup {} is null", series);
690                         }
691                         trajectories.add(trajectoryGroup);
692                     }
693 
694                     // filter groups (lanes) that overlap with section i
695                     List<TrajectoryGroup<?>> included = new ArrayList<>();
696                     List<Length> xStart = new ArrayList<>();
697                     List<Length> xEnd = new ArrayList<>();
698                     for (int k = 0; k < trajectories.size(); k++)
699                     {
700                         TrajectoryGroup<?> trajectoryGroup = trajectories.get(k);
701                         LaneData<?> lane = trajectoryGroup.getLane();
702                         Length startDistance = this.path.getStartDistance(this.path.get(k));
703                         if (startDistance.si + this.path.get(k).length().si > spaceTicks[i]
704                                 && startDistance.si < spaceTicks[i + 1])
705                         {
706                             included.add(trajectoryGroup);
707                             double scale = this.path.get(k).length().si / lane.getLength().si;
708                             // divide by scale, so we go from base length to section length
709                             xStart.add(Length.max(xFrom.minus(startDistance).divide(scale), Length.ZERO));
710                             xEnd.add(Length.min(xTo.minus(startDistance).divide(scale), trajectoryGroup.getLane().getLength()));
711                         }
712                     }
713 
714                     // accumulate distance and time of trajectories
715                     for (int k = 0; k < included.size(); k++)
716                     {
717                         TrajectoryGroup<?> trajectoryGroup = included.get(k);
718                         for (Trajectory<?> trajectory : trajectoryGroup.getTrajectories())
719                         {
720                             // for optimal operations, we first do quick-reject based on time, as by far most trajectories
721                             // during the entire time span of simulation will not apply to a particular cell in space-time
722                             if (GraphUtil.considerTrajectory(trajectory, tFrom, tTo))
723                             {
724                                 // again for optimal operations, we use a space-time view only (we don't need more)
725                                 SpaceTimeView spaceTimeView;
726                                 try
727                                 {
728                                     spaceTimeView = trajectory.getSpaceTimeView(xStart.get(k), xEnd.get(k), tFrom, tTo);
729                                 }
730                                 catch (IllegalArgumentException exception)
731                                 {
732                                     CategoryLogger.always().debug(exception,
733                                             "Unable to generate space-time view from x = {} to {} and t = {} to {}.",
734                                             xStart.get(k), xEnd.get(k), tFrom, tTo);
735                                     continue;
736                                 }
737                                 totalDistance += spaceTimeView.getDistance().si;
738                                 totalTime += spaceTimeView.getTime().si;
739                             }
740                         }
741                     }
742 
743                     // loop and set any additional data
744                     for (ContourDataType<?, ?> contourDataType : this.additionalData.keySet())
745                     {
746                         addAdditional(additionalIntermediate, contourDataType, included, xStart, xEnd, tFrom, tTo);
747                     }
748 
749                 }
750 
751                 // scale values to the full size of a cell on a single lane, so the EGTF is interpolating comparable values
752                 double norm = spaceGranularity / (xTo.si - xFrom.si) / this.path.getNumberOfSeries();
753                 totalDistance *= norm;
754                 totalTime *= norm;
755                 this.distance[i][j] = (float) totalDistance;
756                 this.time[i][j] = (float) totalTime;
757                 for (ContourDataType<?, ?> contourDataType : this.additionalData.keySet())
758                 {
759                     this.additionalData.get(contourDataType)[i][j] =
760                             finalizeAdditional(additionalIntermediate, contourDataType);
761                 }
762 
763                 // add data to EGTF (yes it's a copy, but our local data will be overwritten with smoothed data later)
764                 if (smooth0)
765                 {
766                     // center of cell
767                     double xDat = (xFrom.si + xTo.si) / 2.0;
768                     double tDat = (tFrom.si + tTo.si) / 2.0;
769                     // speed data is implicit as totalDistance/totalTime, but the EGTF needs it explicitly
770                     this.egtf.addPointDataSI(this.speedStream, xDat, tDat, totalDistance / totalTime);
771                     this.egtf.addPointDataSI(this.travelDistanceStream, xDat, tDat, totalDistance);
772                     this.egtf.addPointDataSI(this.travelTimeStream, xDat, tDat, totalTime);
773                     for (ContourDataType<?, ?> contourDataType : this.additionalStreams.keySet())
774                     {
775                         ContourDataSource.this.egtf.addPointDataSI(
776                                 ContourDataSource.this.additionalStreams.get(contourDataType), xDat, tDat,
777                                 this.additionalData.get(contourDataType)[i][j]);
778                     }
779                 }
780 
781                 // check stop (explicit use of properties, not locally stored values)
782                 if (this.redo)
783                 {
784                     // plots need to be redone, or time has increased meaning that a next call may continue further just as well
785                     return;
786                 }
787 
788                 // one more item is ready for plotting
789                 this.readyItems++;
790             }
791 
792             // notify changes for every time slice
793             this.plots.forEach((plot) -> plot.notifyPlotChange());
794         }
795 
796         // smooth all data that is as old as our kernel includes (or all data on a redo)
797         if (smooth0)
798         {
799             Set<Quantity<?, ?>> quantities = new LinkedHashSet<>();
800             quantities.add(this.travelDistanceQuantity);
801             quantities.add(this.travelTimeQuantity);
802             for (ContourDataType<?, ?> contourDataType : this.additionalData.keySet())
803             {
804                 quantities.add(contourDataType.getQuantity());
805             }
806             Filter filter = this.egtf.filterFastSI(spaceTicks[0] + 0.5 * spaceGranularity, spaceGranularity,
807                     spaceTicks[0] + (-1.5 + spaceTicks.length) * spaceGranularity, tFromEgtf, timeGranularity, t.si,
808                     quantities.toArray(new Quantity<?, ?>[quantities.size()]));
809             if (filter != null) // null if interrupted
810             {
811                 overwriteSmoothed(this.distance, nFromEgtf, filter.getSI(this.travelDistanceQuantity));
812                 overwriteSmoothed(this.time, nFromEgtf, filter.getSI(this.travelTimeQuantity));
813                 for (ContourDataType<?, ?> contourDataType : this.additionalData.keySet())
814                 {
815                     overwriteSmoothed(this.additionalData.get(contourDataType), nFromEgtf,
816                             filter.getSI(contourDataType.getQuantity()));
817                 }
818                 this.plots.forEach((plot) -> plot.notifyPlotChange());
819             }
820         }
821     }
822 
823     /**
824      * Add additional data to stored intermediate result.
825      * @param additionalIntermediate Map&lt;ContourDataType&lt;?, ?&gt;, Object&gt;; intermediate storage map
826      * @param contourDataType ContourDataType&lt;?, ?&gt;; additional data type
827      * @param included List&lt;TrajectoryGroup&lt;?&gt;&gt;; trajectories
828      * @param xStart List&lt;Length&gt;; start distance per trajectory group
829      * @param xEnd List&lt;Length&gt;; end distance per trajectory group
830      * @param tFrom Time; start time
831      * @param tTo Time; end time
832      * @param <I> intermediate data type
833      */
834     @SuppressWarnings("unchecked")
835     private <I> void addAdditional(final Map<ContourDataType<?, ?>, Object> additionalIntermediate,
836             final ContourDataType<?, ?> contourDataType, final List<TrajectoryGroup<?>> included, final List<Length> xStart,
837             final List<Length> xEnd, final Time tFrom, final Time tTo)
838     {
839         additionalIntermediate.put(contourDataType, ((ContourDataType<?, I>) contourDataType)
840                 .processSeries((I) additionalIntermediate.get(contourDataType), included, xStart, xEnd, tFrom, tTo));
841     }
842 
843     /**
844      * Stores a finalized result for additional data.
845      * @param additionalIntermediate Map&lt;ContourDataType&lt;?, ?&gt;, Object&gt;; intermediate storage map
846      * @param contourDataType ContourDataType&lt;?, ?&gt;; additional data type
847      * @return float; finalized results for a cell
848      * @param <I> intermediate data type
849      */
850     @SuppressWarnings("unchecked")
851     private <I> float finalizeAdditional(final Map<ContourDataType<?, ?>, Object> additionalIntermediate,
852             final ContourDataType<?, ?> contourDataType)
853     {
854         return ((ContourDataType<?, I>) contourDataType).finalize((I) additionalIntermediate.get(contourDataType)).floatValue();
855     }
856 
857     /**
858      * Helper method to fill smoothed data in to raw data.
859      * @param raw float[][]; the raw unsmoothed data
860      * @param rawCol int; column from which onward to fill smoothed data in to the raw data which is used for plotting
861      * @param smoothed double[][]; smoothed data returned by {@code EGTF}
862      */
863     private void overwriteSmoothed(final float[][] raw, final int rawCol, final double[][] smoothed)
864     {
865         for (int i = 0; i < raw.length; i++)
866         {
867             // can't use System.arraycopy due to float vs double
868             for (int j = 0; j < smoothed[i].length; j++)
869             {
870                 raw[i][j + rawCol] = (float) smoothed[i][j];
871             }
872         }
873     }
874 
875     // ******************************
876     // *** DATA RETRIEVAL METHODS ***
877     // ******************************
878 
879     /**
880      * Returns the speed of the cell pertaining to plot item.
881      * @param item int; plot item
882      * @return double; speed of the cell, calculated as 'total distance' / 'total space'.
883      */
884     public double getSpeed(final int item)
885     {
886         if (item > this.readyItems)
887         {
888             return Double.NaN;
889         }
890         return getTotalDistance(item) / getTotalTime(item);
891     }
892 
893     /**
894      * Returns the total distance traveled in the cell pertaining to plot item.
895      * @param item int; plot item
896      * @return double; total distance traveled in the cell
897      */
898     public double getTotalDistance(final int item)
899     {
900         if (item > this.readyItems)
901         {
902             return Double.NaN;
903         }
904         return this.distance[getSpaceBin(item)][getTimeBin(item)];
905     }
906 
907     /**
908      * Returns the total time traveled in the cell pertaining to plot item.
909      * @param item int; plot item
910      * @return double; total time traveled in the cell
911      */
912     public double getTotalTime(final int item)
913     {
914         if (item > this.readyItems)
915         {
916             return Double.NaN;
917         }
918         return this.time[getSpaceBin(item)][getTimeBin(item)];
919     }
920 
921     /**
922      * Returns data of the given {@code ContourDataType} for a specific item.
923      * @param item int; plot item
924      * @param contourDataType ContourDataType&lt;?, ?&gt;; contour data type
925      * @return data of the given {@code ContourDataType} for a specific item
926      */
927     public double get(final int item, final ContourDataType<?, ?> contourDataType)
928     {
929         if (item > this.readyItems)
930         {
931             return Double.NaN;
932         }
933         return this.additionalData.get(contourDataType)[getSpaceBin(item)][getTimeBin(item)];
934     }
935 
936     /**
937      * Returns the time bin number of the item.
938      * @param item int; item number
939      * @return int; time bin number of the item
940      */
941     private int getTimeBin(final int item)
942     {
943         Throw.when(item < 0 || item >= this.spaceAxis.getBinCount() * this.timeAxis.getBinCount(),
944                 IndexOutOfBoundsException.class, "Item out of range");
945         return item / this.spaceAxis.getBinCount();
946     }
947 
948     /**
949      * Returns the space bin number of the item.
950      * @param item int; item number
951      * @return int; space bin number of the item
952      */
953     private int getSpaceBin(final int item)
954     {
955         return item % this.spaceAxis.getBinCount();
956     }
957 
958     // **********************
959     // *** HELPER CLASSES ***
960     // **********************
961 
962     /**
963      * Enum to refer to either the distance or time axis.
964      * <p>
965      * Copyright (c) 2013-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved.
966      * <br>
967      * BSD-style license. See <a href="https://opentrafficsim.org/docs/license.html">OpenTrafficSim License</a>.
968      * </p>
969      * @author <a href="https://github.com/averbraeck">Alexander Verbraeck</a>
970      * @author <a href="https://tudelft.nl/staff/p.knoppers-1">Peter Knoppers</a>
971      * @author <a href="https://github.com/wjschakel">Wouter Schakel</a>
972      */
973     public enum Dimension
974     {
975         /** Distance axis. */
976         DISTANCE
977         {
978             /** {@inheritDoc} */
979             @Override
980             protected Axis getAxis(final ContourDataSource dataPool)
981             {
982                 return dataPool.spaceAxis;
983             }
984         },
985 
986         /** Time axis. */
987         TIME
988         {
989             /** {@inheritDoc} */
990             @Override
991             protected Axis getAxis(final ContourDataSource dataPool)
992             {
993                 return dataPool.timeAxis;
994             }
995         };
996 
997         /**
998          * Returns the {@code Axis} object.
999          * @param dataPool ContourDataSource; data pool
1000          * @return Axis; axis
1001          */
1002         protected abstract Axis getAxis(ContourDataSource dataPool);
1003     }
1004 
1005     /**
1006      * Class to store and determine axis information such as granularity, ticks, and range.
1007      * <p>
1008      * Copyright (c) 2013-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved.
1009      * <br>
1010      * BSD-style license. See <a href="https://opentrafficsim.org/docs/license.html">OpenTrafficSim License</a>.
1011      * </p>
1012      * @author <a href="https://github.com/averbraeck">Alexander Verbraeck</a>
1013      * @author <a href="https://tudelft.nl/staff/p.knoppers-1">Peter Knoppers</a>
1014      * @author <a href="https://github.com/wjschakel">Wouter Schakel</a>
1015      */
1016     static class Axis
1017     {
1018         /** Minimum value. */
1019         private final double minValue;
1020 
1021         /** Maximum value. */
1022         private double maxValue;
1023 
1024         /** Selected granularity. */
1025         private double granularity;
1026 
1027         /** Possible granularities. */
1028         private final double[] granularities;
1029 
1030         /** Whether the data pool is set to interpolate. */
1031         private boolean interpolate = true;
1032 
1033         /** Tick values. */
1034         private double[] ticks;
1035 
1036         /**
1037          * Constructor.
1038          * @param minValue double; minimum value
1039          * @param maxValue double; maximum value
1040          * @param granularity double; initial granularity
1041          * @param granularities double[]; possible granularities
1042          */
1043         Axis(final double minValue, final double maxValue, final double granularity, final double[] granularities)
1044         {
1045             this.minValue = minValue;
1046             this.maxValue = maxValue;
1047             this.granularity = granularity;
1048             this.granularities = granularities;
1049         }
1050 
1051         /**
1052          * Sets the maximum value.
1053          * @param maxValue double; maximum value
1054          */
1055         void setMaxValue(final double maxValue)
1056         {
1057             if (this.maxValue != maxValue)
1058             {
1059                 this.maxValue = maxValue;
1060                 this.ticks = null;
1061             }
1062         }
1063 
1064         /**
1065          * Sets the granularity.
1066          * @param granularity double; granularity
1067          */
1068         void setGranularity(final double granularity)
1069         {
1070             if (this.granularity != granularity)
1071             {
1072                 this.granularity = granularity;
1073                 this.ticks = null;
1074             }
1075         }
1076 
1077         /**
1078          * Returns the ticks, which are calculated if needed.
1079          * @return double[]; ticks
1080          */
1081         double[] getTicks()
1082         {
1083             if (this.ticks == null)
1084             {
1085                 int n = getBinCount() + 1;
1086                 this.ticks = new double[n];
1087                 int di = this.interpolate ? 1 : 0;
1088                 for (int i = 0; i < n; i++)
1089                 {
1090                     if (i == n - 1)
1091                     {
1092                         this.ticks[i] = Math.min((i - di) * this.granularity, this.maxValue);
1093                     }
1094                     else
1095                     {
1096                         this.ticks[i] = (i - di) * this.granularity;
1097                     }
1098                 }
1099             }
1100             return this.ticks;
1101         }
1102 
1103         /**
1104          * Calculates the number of bins.
1105          * @return int; number of bins
1106          */
1107         int getBinCount()
1108         {
1109             return (int) Math.ceil((this.maxValue - this.minValue) / this.granularity) + (this.interpolate ? 1 : 0);
1110         }
1111 
1112         /**
1113          * Calculates the center value of a bin.
1114          * @param bin int; bin number
1115          * @return double; center value of the bin
1116          */
1117         double getBinValue(final int bin)
1118         {
1119             return this.minValue + (0.5 + bin - (this.interpolate ? 1 : 0)) * this.granularity;
1120         }
1121 
1122         /**
1123          * Looks up the bin number of the value.
1124          * @param value double; value
1125          * @return int; bin number
1126          */
1127         int getValueBin(final double value)
1128         {
1129             getTicks();
1130             if (value > this.ticks[this.ticks.length - 1])
1131             {
1132                 return this.ticks.length - 1;
1133             }
1134             int i = 0;
1135             while (i < this.ticks.length - 1 && this.ticks[i + 1] < value + 1e-9)
1136             {
1137                 i++;
1138             }
1139             return i;
1140         }
1141 
1142         /**
1143          * Sets interpolation, important is it required the data to have an additional row or column.
1144          * @param interpolate boolean; interpolation
1145          */
1146         void setInterpolate(final boolean interpolate)
1147         {
1148             if (this.interpolate != interpolate)
1149             {
1150                 this.interpolate = interpolate;
1151                 this.ticks = null;
1152             }
1153         }
1154 
1155         /**
1156          * Retrieve the interpolate flag.
1157          * @return boolean; true if interpolation is on; false if interpolation is off
1158          */
1159         public boolean isInterpolate()
1160         {
1161             return this.interpolate;
1162         }
1163 
1164         /** {@inheritDoc} */
1165         @Override
1166         public String toString()
1167         {
1168             return "Axis [minValue=" + this.minValue + ", maxValue=" + this.maxValue + ", granularity=" + this.granularity
1169                     + ", granularities=" + Arrays.toString(this.granularities) + ", interpolate=" + this.interpolate
1170                     + ", ticks=" + Arrays.toString(this.ticks) + "]";
1171         }
1172 
1173     }
1174 
1175     /**
1176      * Interface for data types of which a contour plot can be made. Using this class, the data pool can determine and store
1177      * cell values for a variable set of additional data types (besides total distance, total time and speed).
1178      * <p>
1179      * Copyright (c) 2013-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved.
1180      * <br>
1181      * BSD-style license. See <a href="https://opentrafficsim.org/docs/license.html">OpenTrafficSim License</a>.
1182      * </p>
1183      * @author <a href="https://github.com/averbraeck">Alexander Verbraeck</a>
1184      * @author <a href="https://tudelft.nl/staff/p.knoppers-1">Peter Knoppers</a>
1185      * @author <a href="https://github.com/wjschakel">Wouter Schakel</a>
1186      * @param <Z> value type
1187      * @param <I> intermediate data type
1188      */
1189     public interface ContourDataType<Z extends Number, I>
1190     {
1191         /**
1192          * Returns the initial value for intermediate result.
1193          * @return I, initial intermediate value
1194          */
1195         I identity();
1196 
1197         /**
1198          * Calculate value from provided trajectories that apply to a single grid cell on a single series (lane).
1199          * @param intermediate I; intermediate value of previous series, starts as the identity
1200          * @param trajectories List&lt;TrajectoryGroup&lt;?&gt;&gt;; trajectories, all groups overlap the requested space-time
1201          * @param xFrom List&lt;Length&gt;; start location of cell on the section
1202          * @param xTo List&lt;Length&gt;; end location of cell on the section.
1203          * @param tFrom Time; start time of cell
1204          * @param tTo Time; end time of cell
1205          * @return I; intermediate value
1206          */
1207         I processSeries(I intermediate, List<TrajectoryGroup<?>> trajectories, List<Length> xFrom, List<Length> xTo, Time tFrom,
1208                 Time tTo);
1209 
1210         /**
1211          * Returns the final value of the intermediate result after all lanes.
1212          * @param intermediate I; intermediate result after all lanes
1213          * @return Z; final value
1214          */
1215         Z finalize(I intermediate);
1216 
1217         /**
1218          * Returns the quantity that is being plotted on the z-axis for the EGTF filter.
1219          * @return Quantity&lt;Z, ?&gt;; quantity that is being plotted on the z-axis for the EGTF filter
1220          */
1221         Quantity<Z, ?> getQuantity();
1222     }
1223 
1224     /** {@inheritDoc} */
1225     @Override
1226     public String toString()
1227     {
1228         return "ContourDataSource [samplerData=" + this.samplerData + ", updateInterval=" + this.updateInterval + ", delay="
1229                 + this.delay + ", path=" + this.path + ", spaceAxis=" + this.spaceAxis + ", timeAxis=" + this.timeAxis
1230                 + ", plots=" + this.plots + ", distance=" + Arrays.toString(this.distance) + ", time="
1231                 + Arrays.toString(this.time) + ", additionalData=" + this.additionalData + ", smooth=" + this.smooth
1232                 + ", cFree=" + this.cFree + ", vc=" + this.vc + ", egtf=" + this.egtf + ", speedStream=" + this.speedStream
1233                 + ", travelTimeStream=" + this.travelTimeStream + ", travelDistanceStream=" + this.travelDistanceStream
1234                 + ", travelTimeQuantity=" + this.travelTimeQuantity + ", travelDistanceQuantity=" + this.travelDistanceQuantity
1235                 + ", additionalStreams=" + this.additionalStreams + ", graphUpdater=" + this.graphUpdater + ", redo="
1236                 + this.redo + ", toTime=" + this.toTime + ", readyItems=" + this.readyItems + ", desiredSpaceGranularity="
1237                 + this.desiredSpaceGranularity + ", desiredTimeGranularity=" + this.desiredTimeGranularity + "]";
1238     }
1239 
1240 }