View Javadoc
1   package org.opentrafficsim.road.gtu.lane.perception;
2   
3   import java.util.Iterator;
4   import java.util.LinkedHashMap;
5   import java.util.LinkedHashSet;
6   import java.util.LinkedList;
7   import java.util.Map;
8   import java.util.Queue;
9   import java.util.Set;
10  import java.util.SortedMap;
11  import java.util.TreeMap;
12  
13  import org.djunits.value.vdouble.scalar.Length;
14  import org.djutils.exceptions.Try;
15  import org.opentrafficsim.core.gtu.GtuException;
16  import org.opentrafficsim.core.gtu.RelativePosition;
17  import org.opentrafficsim.core.network.Link;
18  import org.opentrafficsim.core.network.route.Route;
19  import org.opentrafficsim.road.gtu.lane.LaneBasedGtu;
20  import org.opentrafficsim.road.gtu.lane.perception.headway.Headway;
21  import org.opentrafficsim.road.gtu.lane.perception.structure.LaneRecordInterface;
22  
23  /**
24   * Abstract iterable that figures out how to find the next nearest object, including splits.
25   * <p>
26   * Copyright (c) 2013-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
27   * BSD-style license. See <a href="https://opentrafficsim.org/docs/license.html">OpenTrafficSim License</a>.
28   * </p>
29   * @author <a href="https://github.com/averbraeck">Alexander Verbraeck</a>
30   * @author <a href="https://tudelft.nl/staff/p.knoppers-1">Peter Knoppers</a>
31   * @author <a href="https://github.com/wjschakel">Wouter Schakel</a>
32   * @param <H> headway type
33   * @param <U> underlying object type
34   * @param <C> counter type
35   */
36  public abstract class AbstractPerceptionIterable<H extends Headway, U, C> extends AbstractPerceptionReiterable<H, U>
37  {
38  
39      /** Root record. */
40      private final LaneRecordInterface<?> root;
41  
42      /** Initial position. */
43      private final Length initialPosition;
44  
45      /** Search downstream (or upstream). */
46      private final boolean downstream;
47  
48      /** Max distance. */
49      private final double maxDistance;
50  
51      /** Position to which distance are calculated by subclasses. */
52      private final RelativePosition relativePosition;
53  
54      /** Route of the GTU. */
55      private final Route route;
56  
57      /**
58       * Constructor.
59       * @param perceivingGtu LaneBasedGtu; perceiving GTU
60       * @param root LaneRecord&lt;?&gt;; root record
61       * @param initialPosition Length; initial position
62       * @param downstream boolean; search downstream (or upstream)
63       * @param maxDistance Length; max distance to search
64       * @param relativePosition RelativePosition; position to which distance are calculated by subclasses
65       * @param route Route; route of the GTU, may be {@code null}
66       */
67      public AbstractPerceptionIterable(final LaneBasedGtu perceivingGtu, final LaneRecordInterface<?> root,
68              final Length initialPosition, final boolean downstream, final Length maxDistance,
69              final RelativePosition relativePosition, final Route route)
70      {
71          super(perceivingGtu);
72          this.root = root;
73          this.initialPosition = initialPosition;
74          this.downstream = downstream;
75          this.maxDistance = maxDistance.si;
76          this.relativePosition = relativePosition;
77          this.route = route;
78      }
79  
80      /**
81       * Whether the iterable searches downstream.
82       * @return boolean; whether the iterable searches downstream
83       */
84      public boolean isDownstream()
85      {
86          return this.downstream;
87      }
88  
89      /** {@inheritDoc} */
90      @Override
91      public Iterator<PrimaryIteratorEntry> primaryIterator()
92      {
93          return new PrimaryIterator();
94      }
95  
96      /**
97       * Returns the next object(s) on the lane represented by the record. This should only consider objects on the given lane.
98       * This method should not check the distance towards objects with the maximum distance. The counter will be {@code null} for
99       * the first object(s). For following object(s) it is whatever value is given with the previous output {@code Entry}. Hence,
100      * this method maintains its own counting system.
101      * @param record LaneRecord&lt;?&gt;; record representing the lane and direction
102      * @param position Length; position to look beyond
103      * @param counter C; counter
104      * @return next object(s) on the lane or {@code null} if none
105      * @throws GtuException on any exception in the process
106      */
107     protected abstract Entry getNext(LaneRecordInterface<?> record, Length position, C counter) throws GtuException;
108 
109     /**
110      * Returns the distance to the object. The position fed in to this method is directly taken from an {@code Entry} returned
111      * by {@code getNext}. The two methods need to be consistent with each other.
112      * @param object U; underlying object
113      * @param record LaneRecord&lt;?&gt;; record representing the lane and direction
114      * @param position Length; position of the object on the lane
115      * @return Length; distance to the object
116      */
117     protected abstract Length getDistance(U object, LaneRecordInterface<?> record, Length position);
118 
119     /**
120      * Returns the longitudinal length of the relevant relative position such that distances to this points can be calculated.
121      * @return Length; the longitudinal length of the relevant relative position such that distances to this points can be
122      *         calculated
123      */
124     protected Length getDx()
125     {
126         return this.relativePosition.dx();
127     }
128 
129     /**
130      * The primary iterator is used by all returned iterators to find the next object. This contains the core algorithm to deal
131      * with splits and multiple objects at a single location.
132      * <p>
133      * Copyright (c) 2013-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved.
134      * <br>
135      * BSD-style license. See <a href="https://opentrafficsim.org/docs/license.html">OpenTrafficSim License</a>.
136      * </p>
137      * @author <a href="https://github.com/averbraeck">Alexander Verbraeck</a>
138      * @author <a href="https://tudelft.nl/staff/p.knoppers-1">Peter Knoppers</a>
139      * @author <a href="https://github.com/wjschakel">Wouter Schakel</a>
140      */
141     private class PrimaryIterator implements Iterator<PrimaryIteratorEntry>
142     {
143 
144         /** Map containing the objects found per branch. */
145         private SortedMap<PrimaryIteratorEntry, LaneRecordInterface<?>> map;
146 
147         /** Position per record where the search was halted. */
148         private Map<LaneRecordInterface<?>, Length> positions = new LinkedHashMap<>();
149 
150         /** Items returned to prevent duplicates. */
151         private Set<U> returnedItems = new LinkedHashSet<>();
152 
153         /** Sets of remaining objects at the same location. */
154         private Map<LaneRecordInterface<?>, Queue<PrimaryIteratorEntry>> queues = new LinkedHashMap<>();
155 
156         /** Counter objects per lane. */
157         private Map<LaneRecordInterface<?>, C> counters = new LinkedHashMap<>();
158 
159         /** Record regarding a postponed call to {@code getNext()}. */
160         private LaneRecordInterface<?> postponedRecord = null;
161 
162         /** Position regarding a postponed call to {@code getNext()}. */
163         private Length postponedPosition = null;
164 
165         /** Constructor. */
166         PrimaryIterator()
167         {
168             //
169         }
170 
171         /** {@inheritDoc} */
172         @Override
173         public boolean hasNext()
174         {
175             // (re)start the process
176             startProcess();
177 
178             // check next value
179             return !this.map.isEmpty();
180         }
181 
182         /** {@inheritDoc} */
183         @Override
184         public PrimaryIteratorEntry next()
185         {
186             // (re)start the process
187             startProcess();
188 
189             // get and remove next
190             PrimaryIteratorEntry nextEntry = this.map.firstKey();
191             U next = nextEntry.getObject();
192             LaneRecordInterface<?> record = this.map.get(nextEntry);
193             this.map.remove(nextEntry);
194 
195             // see if we can obtain the next from a queue
196             Queue<PrimaryIteratorEntry> queue = this.queues.get(next);
197             if (queue != null)
198             {
199                 PrimaryIteratorEntry nextNext = queue.poll();
200                 this.map.put(nextNext, record); // next object is made available in the map
201                 if (queue.isEmpty())
202                 {
203                     this.queues.remove(record);
204                 }
205                 preventDuplicateEntries(nextEntry.getObject());
206                 return nextNext;
207             }
208 
209             // prepare for next
210             this.postponedRecord = record;
211             this.postponedPosition = this.positions.get(record); // position;
212             preventDuplicateEntries(nextEntry.getObject());
213             return nextEntry;
214         }
215 
216         /**
217          * Prevents that duplicate (and further) records are returned for the given object as splits later on merge.
218          * @param object U; object for which a {@code PrimaryIteratorEntry} will be returned
219          */
220         private void preventDuplicateEntries(final U object)
221         {
222             this.returnedItems.add(object); // prevents new items to be added over alive branches (that should die out)
223             Iterator<PrimaryIteratorEntry> it = this.map.keySet().iterator();
224             while (it.hasNext())
225             {
226                 PrimaryIteratorEntry entry = it.next();
227                 if (entry.getObject().equals(object))
228                 {
229                     it.remove();
230                 }
231             }
232         }
233 
234         /**
235          * Starts or restarts the process.
236          */
237         @SuppressWarnings("synthetic-access")
238         private void startProcess()
239         {
240             if (this.postponedRecord != null)
241             {
242                 // restart the process; perform prepareNext() that was postponed
243                 prepareNext(this.postponedRecord, this.postponedPosition);
244                 this.postponedRecord = null;
245                 this.postponedPosition = null;
246             }
247             else if (this.map == null)
248             {
249                 // start the process
250                 this.map = new TreeMap<>();
251                 prepareNext(AbstractPerceptionIterable.this.root, AbstractPerceptionIterable.this.initialPosition);
252             }
253         }
254 
255         /**
256          * Iterative method that continues a search on the next lanes if no object is found.
257          * @param record LaneRecord&lt;?&gt;; record
258          * @param position Length; position
259          */
260         @SuppressWarnings("synthetic-access")
261         private void prepareNext(final LaneRecordInterface<?> record, final Length position)
262         {
263             Entry next = Try.assign(() -> AbstractPerceptionIterable.this.getNext(record, position, this.counters.get(record)),
264                     "Exception while deriving next object.");
265             if (next == null)
266             {
267                 this.counters.remove(record);
268                 double distance = AbstractPerceptionIterable.this.downstream
269                         ? record.getStartDistance().si + record.getLength().si : -record.getStartDistance().si;
270                 // TODO this let's us ignore an object that is registered on the next lane, but who's tail may be on this lane
271                 if (distance < AbstractPerceptionIterable.this.maxDistance)
272                 {
273                     if (AbstractPerceptionIterable.this.downstream)
274                     {
275                         for (LaneRecordInterface<?> nextRecord : record.getNext())
276                         {
277                             if (isOnRoute(nextRecord))
278                             {
279                                 prepareNext(nextRecord, Length.instantiateSI(-1e-9));
280                             }
281                         }
282                     }
283                     else
284                     {
285                         for (LaneRecordInterface<?> nextRecord : record.getPrev())
286                         {
287                             if (isOnRoute(nextRecord))
288                             {
289                                 prepareNext(nextRecord, nextRecord.getLength());
290                             }
291                         }
292                     }
293                 }
294             }
295             else
296             {
297                 this.counters.put(record, next.counter);
298                 if (next.isSet())
299                 {
300                     Iterator<U> it = next.set.iterator();
301                     U nextNext = it.next();
302                     if (!this.returnedItems.contains(nextNext))
303                     {
304                         Length distance = getDistance(nextNext, record, next.position);
305                         if (distance == null // null means the object overlaps and is close
306                                 || distance.si <= AbstractPerceptionIterable.this.maxDistance)
307                         {
308                             // next object is made available in the map
309                             this.map.put(new PrimaryIteratorEntry(nextNext, distance), record);
310                             this.positions.put(record, next.position);
311                             if (next.set.size() > 1)
312                             {
313                                 // remaining at this location are made available in a queue
314                                 Queue<PrimaryIteratorEntry> queue = new LinkedList<>();
315                                 while (it.hasNext())
316                                 {
317                                     nextNext = it.next();
318                                     queue.add(new PrimaryIteratorEntry(nextNext, getDistance(nextNext, record, next.position)));
319                                 }
320                                 this.queues.put(record, queue);
321                             }
322                         }
323                     }
324                 }
325                 else if (!this.returnedItems.contains(next.object))
326                 {
327                     Length distance = getDistance(next.object, record, next.position);
328                     if (distance == null // null means the object overlaps and is close
329                             || distance.si <= AbstractPerceptionIterable.this.maxDistance)
330                     {
331                         // next object is made available in the map
332                         this.map.put(new PrimaryIteratorEntry(next.object, distance), record);
333                         this.positions.put(record, next.position);
334                     }
335                 }
336             }
337         }
338 
339     }
340 
341     /**
342      * Returns whether the record is on the route.
343      * @param record LaneRecord&lt;?&gt;; record
344      * @return boolean; whether the record is on the route
345      */
346     final boolean isOnRoute(final LaneRecordInterface<?> record)
347     {
348         if (this.route == null)
349         {
350             return true;
351         }
352         Link link = record.getLane().getLink();
353         int from;
354         int to;
355         from = this.route.indexOf(link.getStartNode());
356         to = this.route.indexOf(link.getEndNode());
357         return from != -1 && to != -1 && to - from == 1;
358     }
359 
360     /**
361      * Class of objects for subclasses to return. This can contain either a single object, or a set if there are multiple
362      * objects at a single location.
363      * <p>
364      * Copyright (c) 2013-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved.
365      * <br>
366      * BSD-style license. See <a href="https://opentrafficsim.org/docs/license.html">OpenTrafficSim License</a>.
367      * </p>
368      * @author <a href="https://github.com/averbraeck">Alexander Verbraeck</a>
369      * @author <a href="https://tudelft.nl/staff/p.knoppers-1">Peter Knoppers</a>
370      * @author <a href="https://github.com/wjschakel">Wouter Schakel</a>
371      */
372     protected class Entry
373     {
374 
375         /** Set. */
376         private final Set<U> set;
377 
378         /** Object. */
379         private final U object;
380 
381         /** Counter. */
382         private final C counter;
383 
384         /** Position on the lane. */
385         private final Length position;
386 
387         /**
388          * Constructor.
389          * @param object U; object
390          * @param counter C; counter, may be {@code null}
391          * @param position Length; position
392          */
393         public Entry(final U object, final C counter, final Length position)
394         {
395             this.set = null;
396             this.object = object;
397             this.counter = counter;
398             this.position = position;
399         }
400 
401         /**
402          * Constructor.
403          * @param set Set&lt;U&gt;; set
404          * @param counter C; counter, may be {@code null}
405          * @param position Length; position
406          */
407         public Entry(final Set<U> set, final C counter, final Length position)
408         {
409             this.set = set;
410             this.object = null;
411             this.counter = counter;
412             this.position = position;
413         }
414 
415         /**
416          * Returns whether this entry contains a set.
417          * @return whether this entry contains a set
418          */
419         final boolean isSet()
420         {
421             return this.set != null;
422         }
423 
424         /**
425          * Returns the underlying object. Use {@code !isSet()} to check whether there is an object.
426          * @return U; underlying set
427          */
428         public U getObject()
429         {
430             return this.object;
431         }
432 
433         /**
434          * Returns the underlying set. Use {@code isSet()} to check whether there is a set.
435          * @return Set&lt;U&gt;; underlying set
436          */
437         public Set<U> getSet()
438         {
439             return this.set;
440         }
441 
442     }
443 
444 }