View Javadoc
1   package org.opentrafficsim.road.network;
2   
3   import java.util.Iterator;
4   import java.util.LinkedHashMap;
5   import java.util.List;
6   import java.util.Map;
7   import java.util.Set;
8   import java.util.SortedSet;
9   import java.util.TreeSet;
10  
11  import org.djunits.value.vdouble.scalar.Length;
12  import org.djutils.base.Identifiable;
13  import org.djutils.exceptions.Throw;
14  import org.djutils.immutablecollections.ImmutableSortedSet;
15  import org.djutils.immutablecollections.ImmutableTreeSet;
16  import org.djutils.multikeymap.MultiKeyMap;
17  import org.jgrapht.GraphPath;
18  import org.jgrapht.alg.shortestpath.DijkstraShortestPath;
19  import org.jgrapht.graph.SimpleDirectedWeightedGraph;
20  import org.opentrafficsim.core.dsol.OtsSimulatorInterface;
21  import org.opentrafficsim.core.gtu.GtuType;
22  import org.opentrafficsim.core.network.LateralDirectionality;
23  import org.opentrafficsim.core.network.Link;
24  import org.opentrafficsim.core.network.Network;
25  import org.opentrafficsim.core.network.NetworkException;
26  import org.opentrafficsim.core.network.Node;
27  import org.opentrafficsim.core.network.route.Route;
28  import org.opentrafficsim.road.network.lane.CrossSectionLink;
29  import org.opentrafficsim.road.network.lane.Lane;
30  
31  /**
32   * RoadNetwork adds the ability to retrieve lane change information.
33   * <p>
34   * Copyright (c) 2013-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
35   * BSD-style license. See <a href="https://opentrafficsim.org/docs/license.html">OpenTrafficSim License</a>.
36   * </p>
37   * @author <a href="https://github.com/averbraeck" target="_blank">Alexander Verbraeck</a>
38   * @author <a href="https://github.com/wjschakel">Wouter Schakel</a>
39   */
40  public class RoadNetwork extends Network
41  {
42      /** */
43      private static final long serialVersionUID = 1L;
44  
45      /** Cached lane graph for legal connections, per GTU type. */
46      private Map<GtuType, RouteWeightedGraph> legalLaneGraph = new LinkedHashMap<>();
47  
48      /** Cached lane graph for physical connections. */
49      private RouteWeightedGraph physicalLaneGraph = null;
50  
51      /** Cached legal lane change info, over complete length of route. */
52      private MultiKeyMap<SortedSet<LaneChangeInfo>> legalLaneChangeInfoCache =
53              new MultiKeyMap<>(GtuType.class, Route.class, Lane.class);
54  
55      /** Cached physical lane change info, over complete length of route. */
56      private MultiKeyMap<SortedSet<LaneChangeInfo>> physicalLaneChangeInfoCache = new MultiKeyMap<>(Route.class, Lane.class);
57  
58      /**
59       * Construction of an empty network.
60       * @param id the network id.
61       * @param simulator the DSOL simulator engine
62       */
63      public RoadNetwork(final String id, final OtsSimulatorInterface simulator)
64      {
65          super(id, simulator);
66      }
67  
68      /**
69       * Returns lane change info from the given lane. Distances are given from the start of the lane and will never exceed the
70       * given range. This method returns {@code null} if no valid path exists. If there are no reasons to change lane within
71       * range, an empty set is returned.
72       * @param lane from lane.
73       * @param route route.
74       * @param gtuType GTU Type.
75       * @param range maximum range of info to consider, from the start of the given lane.
76       * @param laneAccessLaw lane access law.
77       * @return lane change info from the given lane, or {@code null} if no path exists.
78       */
79      public ImmutableSortedSet<LaneChangeInfo> getLaneChangeInfo(final Lane lane, final Route route, final GtuType gtuType,
80              final Length range, final LaneAccessLaw laneAccessLaw)
81      {
82          Throw.whenNull(lane, "Lane may not be null.");
83          Throw.whenNull(route, "Route may not be null.");
84          Throw.whenNull(gtuType, "GTU type may not be null.");
85          Throw.whenNull(range, "Range may not be null.");
86          Throw.whenNull(laneAccessLaw, "Lane access law may not be null.");
87          Throw.when(range.le0(), IllegalArgumentException.class, "Range should be a positive value.");
88  
89          // get the complete info
90          SortedSet<LaneChangeInfo> info = getCompleteLaneChangeInfo(lane, route, gtuType, laneAccessLaw);
91          if (info == null)
92          {
93              return null;
94          }
95  
96          // find first LaneChangeInfo beyond range, if any
97          LaneChangeInfo lcInfoBeyondHorizon = null;
98          Iterator<LaneChangeInfo> iterator = info.iterator();
99          while (lcInfoBeyondHorizon == null && iterator.hasNext())
100         {
101             LaneChangeInfo lcInfo = iterator.next();
102             if (lcInfo.remainingDistance().gt(range))
103             {
104                 lcInfoBeyondHorizon = lcInfo;
105             }
106         }
107 
108         // return subset in range
109         if (lcInfoBeyondHorizon != null)
110         {
111             return new ImmutableTreeSet<>(info.headSet(lcInfoBeyondHorizon));
112         }
113         return new ImmutableTreeSet<>(info); // empty, or all in range
114     }
115 
116     /**
117      * Returns the complete (i.e. without range) lane change info from the given lane. It is either taken from cache, or
118      * created.
119      * @param lane from lane.
120      * @param route route.
121      * @param gtuType GTU Type.
122      * @param laneAccessLaw lane access law.
123      * @return complete (i.e. without range) lane change info from the given lane, or {@code null} if no path exists.
124      */
125     private SortedSet<LaneChangeInfo> getCompleteLaneChangeInfo(final Lane lane, final Route route, final GtuType gtuType,
126             final LaneAccessLaw laneAccessLaw)
127     {
128         // try to get info from the right cache
129         SortedSet<LaneChangeInfo> outputLaneChangeInfo;
130         if (laneAccessLaw.equals(LaneAccessLaw.LEGAL))
131         {
132             outputLaneChangeInfo = this.legalLaneChangeInfoCache.get(gtuType, route, lane);
133             // build info if required
134             if (outputLaneChangeInfo == null)
135             {
136                 // get the right lane graph for the GTU type, or build it
137                 RouteWeightedGraph graph = this.legalLaneGraph.get(gtuType);
138                 if (graph == null)
139                 {
140                     graph = new RouteWeightedGraph();
141                     this.legalLaneGraph.put(gtuType, graph);
142                     buildGraph(graph, gtuType, laneAccessLaw);
143                 }
144                 List<LaneChangeInfoEdge> path = findPath(lane, graph, gtuType, route);
145 
146                 if (path != null)
147                 {
148                     // derive lane change info from every lane along the path and cache it
149                     boolean originalPath = true;
150                     while (!path.isEmpty())
151                     {
152                         SortedSet<LaneChangeInfo> laneChangeInfo = extractLaneChangeInfo(path);
153                         if (originalPath)
154                         {
155                             outputLaneChangeInfo = laneChangeInfo;
156                             originalPath = false;
157                         }
158                         this.legalLaneChangeInfoCache.put(laneChangeInfo, gtuType, route, path.get(0).fromLane());
159                         path.remove(0); // next lane
160                     }
161                 }
162             }
163         }
164         else if (laneAccessLaw.equals(LaneAccessLaw.PHYSICAL))
165         {
166             outputLaneChangeInfo = this.physicalLaneChangeInfoCache.get(route, lane);
167             // build info if required
168             if (outputLaneChangeInfo == null)
169             {
170                 // build the lane graph if required
171                 if (this.physicalLaneGraph == null)
172                 {
173                     this.physicalLaneGraph = new RouteWeightedGraph();
174                     // TODO: Is the GTU type actually relevant for physical? It is used still to find adjacent lanes.
175                     buildGraph(this.physicalLaneGraph, gtuType, laneAccessLaw);
176                 }
177                 List<LaneChangeInfoEdge> path = findPath(lane, this.physicalLaneGraph, gtuType, route);
178 
179                 if (path != null)
180                 {
181                     // derive lane change info from every lane along the path and cache it
182                     boolean originalPath = true;
183                     while (!path.isEmpty())
184                     {
185                         SortedSet<LaneChangeInfo> laneChangeInfo = extractLaneChangeInfo(path);
186                         if (originalPath)
187                         {
188                             outputLaneChangeInfo = laneChangeInfo;
189                             originalPath = false;
190                         }
191                         this.physicalLaneChangeInfoCache.put(laneChangeInfo, route, path.get(0).fromLane());
192                         path.remove(0); // next lane
193                     }
194                 }
195             }
196         }
197         else
198         {
199             // in case it is inadvertently extended in the future
200             throw new RuntimeException(String.format("Unknown LaneChangeLaw %s", laneAccessLaw));
201         }
202         return outputLaneChangeInfo;
203     }
204 
205     /**
206      * Builds the graph.
207      * @param graph empty graph to build.
208      * @param gtuType GTU type.
209      * @param laneChangeLaw lane change law, legal or physical.
210      */
211     private void buildGraph(final RouteWeightedGraph graph, final GtuType gtuType, final LaneAccessLaw laneChangeLaw)
212     {
213         // add vertices
214         boolean legal = laneChangeLaw.equals(LaneAccessLaw.LEGAL);
215         for (Link link : this.getLinkMap().values())
216         {
217             for (Lane lane : legal ? ((CrossSectionLink) link).getLanes() : ((CrossSectionLink) link).getLanesAndShoulders())
218             {
219                 graph.addVertex(lane);
220             }
221             // each end node may be a destination for the shortest path search
222             graph.addVertex(link.getEndNode());
223         }
224 
225         // add edges
226         for (Link link : this.getLinkMap().values())
227         {
228             if (link instanceof CrossSectionLink cLink)
229             {
230                 for (Lane lane : legal ? cLink.getLanes() : cLink.getLanesAndShoulders())
231                 {
232                     // adjacent lanes
233                     for (LateralDirectionality lat : List.of(LateralDirectionality.LEFT, LateralDirectionality.RIGHT))
234                     {
235                         Set<Lane> adjacentLanes;
236                         if (legal)
237                         {
238                             adjacentLanes = lane.accessibleAdjacentLanesLegal(lat, gtuType);
239                         }
240                         else
241                         {
242                             adjacentLanes = lane.accessibleAdjacentLanesPhysical(lat, gtuType);
243                         }
244                         for (Lane adjacentLane : adjacentLanes)
245                         {
246                             LaneChangeInfoEdgeType type = lat.equals(LateralDirectionality.LEFT) ? LaneChangeInfoEdgeType.LEFT
247                                     : LaneChangeInfoEdgeType.RIGHT;
248                             // downstream link may be null for lateral edges
249                             LaneChangeInfoEdge edge = new LaneChangeInfoEdge(lane, type, null);
250                             graph.addEdge(lane, adjacentLane, edge);
251                         }
252                     }
253                     // next lanes
254                     Set<Lane> nextLanes = lane.nextLanes(legal ? gtuType : null);
255                     for (Lane nextLane : nextLanes)
256                     {
257                         LaneChangeInfoEdge edge =
258                                 new LaneChangeInfoEdge(lane, LaneChangeInfoEdgeType.DOWNSTREAM, nextLane.getLink());
259                         graph.addEdge(lane, nextLane, edge);
260                     }
261                     // add edge towards end node so that it can be used as a destination in the shortest path search
262                     LaneChangeInfoEdge edge = new LaneChangeInfoEdge(lane, LaneChangeInfoEdgeType.DOWNSTREAM, null);
263                     graph.addEdge(lane, lane.getLink().getEndNode(), edge);
264                 }
265             }
266         }
267     }
268 
269     /**
270      * Returns a set of lane change info, extracted from the graph.
271      * @param lane from lane.
272      * @param graph graph.
273      * @param gtuType GTU Type.
274      * @param route route.
275      * @return path derived from the graph, or {@code null} if there is no path.
276      */
277     private List<LaneChangeInfoEdge> findPath(final Lane lane, final RouteWeightedGraph graph, final GtuType gtuType,
278             final Route route)
279     {
280         // if there is no route, find the destination node by moving down the links (no splits allowed)
281         Node destination = null;
282         Route routeForWeights = route;
283         if (route == null)
284         {
285             destination = graph.getNoRouteDestinationNode(gtuType);
286             try
287             {
288                 routeForWeights = getShortestRouteBetween(gtuType, lane.getLink().getStartNode(), destination);
289             }
290             catch (NetworkException exception)
291             {
292                 // this should not happen, as we obtained the destination by moving downstream towards the end of the network
293                 throw new RuntimeException("Could not find route to destination.", exception);
294             }
295         }
296         else
297         {
298             // otherwise, get destination node from route, which is the last node on a link with lanes (i.e. no connector)
299             List<Node> nodes = route.getNodes();
300             for (int i = nodes.size() - 1; i > 0; i--)
301             {
302                 Link link = getLink(nodes.get(i - 1), nodes.get(i));
303                 if (link instanceof CrossSectionLink && !((CrossSectionLink) link).getLanes().isEmpty())
304                 {
305                     destination = nodes.get(i);
306                     break; // found most downstream link with lanes, who's end node is the destination for lane changes
307                 }
308             }
309             Throw.whenNull(destination, "Route has no links with lanes, "
310                     + "unable to find a suitable destination node regarding lane change information.");
311         }
312 
313         // set the route on the path for route-dependent edge weights
314         graph.setRoute(routeForWeights);
315 
316         // find the shortest path
317         GraphPath<Identifiable, LaneChangeInfoEdge> path = DijkstraShortestPath.findPathBetween(graph, lane, destination);
318         return path == null ? null : path.getEdgeList();
319     }
320 
321     /**
322      * Extracts lane change info from a path.
323      * @param path path.
324      * @return lane change info.
325      */
326     private SortedSet<LaneChangeInfo> extractLaneChangeInfo(final List<LaneChangeInfoEdge> path)
327     {
328         SortedSet<LaneChangeInfo> info = new TreeSet<>();
329         Length x = Length.ZERO; // cumulative longitudinal distance
330         int n = 0; // number of applied lane changes
331         boolean inLateralState = false; // consecutive lateral moves in the path create 1 LaneChangeInfo
332         for (LaneChangeInfoEdge edge : path)
333         {
334             LaneChangeInfoEdgeType lcType = edge.laneChangeInfoEdgeType();
335             int lat = lcType.equals(LaneChangeInfoEdgeType.LEFT) ? -1 : (lcType.equals(LaneChangeInfoEdgeType.RIGHT) ? 1 : 0);
336 
337             // check opposite lateral direction
338             if (n * lat < 0)
339             {
340                 /*
341                  * The required direction is opposite a former required direction, in which case all further lane change
342                  * information is not yet of concern. For example, we first need to make 1 right lane change for a lane drop,
343                  * and then later 2 lane changes to the left for a split. The latter information is pointless before the lane
344                  * drop; we are not going to stay on the lane longer as it won't affect the ease of the left lane changes later.
345                  */
346                 break;
347             }
348 
349             // increase n, x, and trigger (consecutive) lateral move start or stop
350             if (lat == 0)
351             {
352                 // lateral move stop
353                 if (inLateralState)
354                 {
355                     // TODO: isDeadEnd should be removed from LaneChangeInfo, behavior should consider legal vs. physical
356                     boolean isDeadEnd = false;
357                     info.add(new LaneChangeInfo(Math.abs(n), x, isDeadEnd,
358                             n < 0 ? LateralDirectionality.LEFT : LateralDirectionality.RIGHT));
359                     inLateralState = false;
360                     // don't add the length of the previous lane, that was already done for the first lane of all lateral moves
361                 }
362                 else
363                 {
364                     // longitudinal move, we need to add distance to x
365                     x = x.plus(edge.fromLane().getLength());
366                 }
367             }
368             else
369             {
370                 // lateral move start
371                 if (!inLateralState)
372                 {
373                     x = x.plus(edge.fromLane().getLength()); // need to add length of first lane of all lateral moves
374                     inLateralState = true;
375                 }
376                 // increase lane change count (negative for left)
377                 n += lat;
378             }
379         }
380         return info;
381     }
382 
383     /**
384      * Clears all lane change info graphs and cached sets. This method should be invoked on every network change that affects
385      * lane changes and the distances within which they need to be performed.
386      */
387     public void clearLaneChangeInfoCache()
388     {
389         this.legalLaneGraph.clear();
390         this.physicalLaneGraph = null;
391         this.legalLaneChangeInfoCache = new MultiKeyMap<>(GtuType.class, Route.class, Lane.class);
392         this.physicalLaneChangeInfoCache = new MultiKeyMap<>(Route.class, Lane.class);
393     }
394 
395     /**
396      * A {@code SimpleDirectedWeightedGraph} to search over the lanes, where the weight of an edge (movement between lanes) is
397      * tailored to providing lane change information. The vertex type is {@code Identifiable} such that both {@code Lane}'s and
398      * {@code Node}'s can be used. The latter is required to find paths towards a destination node.
399      * <p>
400      * Copyright (c) 2022-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved.
401      * <br>
402      * BSD-style license. See <a href="https://opentrafficsim.org/docs/license.html">OpenTrafficSim License</a>.
403      * </p>
404      * @author <a href="https://github.com/wjschakel">Wouter Schakel</a>
405      */
406     private class RouteWeightedGraph extends SimpleDirectedWeightedGraph<Identifiable, LaneChangeInfoEdge>
407     {
408 
409         /** */
410         private static final long serialVersionUID = 20220923L;
411 
412         /** Route. */
413         private Route route;
414 
415         /** Node in the network that is the destination if no route is used. */
416         private Node noRouteDestination = null;
417 
418         /**
419          * Constructor.
420          */
421         RouteWeightedGraph()
422         {
423             super(LaneChangeInfoEdge.class);
424         }
425 
426         /**
427          * Set the route.
428          * @param route route.
429          */
430         public void setRoute(final Route route)
431         {
432             Throw.whenNull(route, "Route may not be null for lane change information.");
433             this.route = route;
434         }
435 
436         /**
437          * Returns the weight of moving from one lane to the next. In order to find the latest possible location at which lane
438          * changes may still be performed, the longitudinal weights are 1.0 while the lateral weights are 1.0 + 1/X, where X is
439          * the number (index) of the link within the route. This favors later lane changes for the shortest path algorithm, as
440          * we are interested in the distances within which the lane change have to be performed. In the case an edge is towards
441          * a link that is not in a given route, a positive infinite weight is returned. Finally, when the edge is towards a
442          * node, which may be the destination in a route, 0.0 is returned.
443          */
444         @Override
445         public double getEdgeWeight(final LaneChangeInfoEdge e)
446         {
447             if (e.laneChangeInfoEdgeType().equals(LaneChangeInfoEdgeType.LEFT)
448                     || e.laneChangeInfoEdgeType().equals(LaneChangeInfoEdgeType.RIGHT))
449             {
450                 int indexEndNode = this.route.indexOf(e.fromLane().getLink().getEndNode());
451                 return 1.0 + 1.0 / indexEndNode; // lateral, reduce weight for further lane changes
452             }
453             Link toLink = e.toLink();
454             if (toLink == null)
455             {
456                 return 0.0; // edge towards Node, which may be the destination in a Route
457             }
458             if (this.route.contains(toLink.getEndNode())
459                     && this.route.indexOf(toLink.getEndNode()) == this.route.indexOf(toLink.getStartNode()) + 1)
460             {
461                 return 1.0; // downstream, always 1.0 if the next lane is on the route
462             }
463             return Double.POSITIVE_INFINITY; // next lane not on the route, this is a dead-end branch for the route
464         }
465 
466         /**
467          * Returns the destination node to use when no route is available. This will be the last node found moving downstream.
468          * @param gtuType GTU type.
469          * @return destination node to use when no route is available.
470          */
471         public Node getNoRouteDestinationNode(final GtuType gtuType)
472         {
473             if (this.noRouteDestination == null)
474             {
475                 // get any lane from the network
476                 Lane lane = null;
477                 Iterator<Identifiable> iterator = this.vertexSet().iterator();
478                 while (lane == null && iterator.hasNext())
479                 {
480                     Identifiable next = iterator.next();
481                     if (next instanceof Lane)
482                     {
483                         lane = (Lane) next;
484                     }
485                 }
486                 Throw.when(lane == null, RuntimeException.class, "Requesting destination node on network without lanes.");
487                 // move to downstream link for as long as there is 1 downstream link
488                 try
489                 {
490                     Link link = lane.getLink();
491                     Set<Link> downstreamLinks = link.getEndNode().nextLinks(gtuType, link);
492                     while (downstreamLinks.size() == 1)
493                     {
494                         link = downstreamLinks.iterator().next();
495                         downstreamLinks = link.getEndNode().nextLinks(gtuType, link);
496                     }
497                     Throw.when(downstreamLinks.size() > 1, RuntimeException.class, "Using null route on network with split. "
498                             + "Unable to find a destination to find lane change info towards.");
499                     this.noRouteDestination = link.getEndNode();
500                 }
501                 catch (NetworkException ne)
502                 {
503                     throw new RuntimeException("Requesting lane change info from link that does not allow the GTU type.", ne);
504                 }
505             }
506             return this.noRouteDestination;
507         }
508     }
509 
510     /**
511      * Edge between two lanes, or between a lane and a node (to provide the shortest path algorithm with a suitable
512      * destination). From a list of these from a path, the lane change information along the path (distances and number of lane
513      * changes) can be derived.
514      * <p>
515      * Copyright (c) 2022-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved.
516      * <br>
517      * BSD-style license. See <a href="https://opentrafficsim.org/docs/license.html">OpenTrafficSim License</a>.
518      * </p>
519      * @author <a href="https://github.com/wjschakel">Wouter Schakel</a>
520      * @param fromLane from lane, to allow construction of distances from a path.
521      * @param laneChangeInfoEdgeType the type of lane to lane movement performed along this edge.
522      * @param toLink to link (of the lane this edge moves to).
523      */
524     private static record LaneChangeInfoEdge(Lane fromLane, LaneChangeInfoEdgeType laneChangeInfoEdgeType, Link toLink)
525     {
526     }
527 
528     /**
529      * Enum to provide information on the lane to lane movement in a path.
530      * <p>
531      * Copyright (c) 2022-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved.
532      * <br>
533      * BSD-style license. See <a href="https://opentrafficsim.org/docs/license.html">OpenTrafficSim License</a>.
534      * </p>
535      * @author <a href="https://github.com/wjschakel">Wouter Schakel</a>
536      */
537     private enum LaneChangeInfoEdgeType
538     {
539         /** Left lane change. */
540         LEFT,
541 
542         /** Right lane change. */
543         RIGHT,
544 
545         /** Downstream movement, either towards a lane, or towards a node (which may be the destination in a route). */
546         DOWNSTREAM;
547     }
548 
549 }