View Javadoc
1   package org.opentrafficsim.draw.graphs;
2   
3   import java.util.ArrayList;
4   import java.util.Arrays;
5   import java.util.LinkedHashMap;
6   import java.util.LinkedHashSet;
7   import java.util.List;
8   import java.util.Map;
9   import java.util.Set;
10  
11  import org.djunits.unit.SpeedUnit;
12  import org.djunits.value.vdouble.scalar.Duration;
13  import org.djunits.value.vdouble.scalar.Length;
14  import org.djunits.value.vdouble.scalar.Speed;
15  import org.djunits.value.vdouble.scalar.Time;
16  import org.djutils.exceptions.Throw;
17  import org.djutils.logger.CategoryLogger;
18  import org.opentrafficsim.core.egtf.Converter;
19  import org.opentrafficsim.core.egtf.DataSource;
20  import org.opentrafficsim.core.egtf.DataStream;
21  import org.opentrafficsim.core.egtf.EGTF;
22  import org.opentrafficsim.core.egtf.EgtfEvent;
23  import org.opentrafficsim.core.egtf.EgtfListener;
24  import org.opentrafficsim.core.egtf.Filter;
25  import org.opentrafficsim.core.egtf.Quantity;
26  import org.opentrafficsim.core.egtf.typed.TypedQuantity;
27  import org.opentrafficsim.draw.graphs.GraphPath.Section;
28  import org.opentrafficsim.kpi.interfaces.GtuDataInterface;
29  import org.opentrafficsim.kpi.sampling.KpiLaneDirection;
30  import org.opentrafficsim.kpi.sampling.SamplerData;
31  import org.opentrafficsim.kpi.sampling.Trajectory;
32  import org.opentrafficsim.kpi.sampling.Trajectory.SpaceTimeView;
33  import org.opentrafficsim.kpi.sampling.TrajectoryGroup;
34  
35  /**
36   * Class that contains data for contour plots. One data source can be shared between contour plots, in which case the
37   * granularity, path, sampler, update interval, and whether the data is smoothed (EGTF) are equal between the plots.
38   * <p>
39   * By default the source contains traveled time and traveled distance per cell.
40   * <p>
41   * Copyright (c) 2013-2020 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
42   * BSD-style license. See <a href="http://opentrafficsim.org/node/13">OpenTrafficSim License</a>.
43   * <p>
44   * @version $Revision$, $LastChangedDate$, by $Author$, initial version 5 okt. 2018 <br>
45   * @author <a href="http://www.tbm.tudelft.nl/averbraeck">Alexander Verbraeck</a>
46   * @author <a href="http://www.tudelft.nl/pknoppers">Peter Knoppers</a>
47   * @author <a href="http://www.transport.citg.tudelft.nl">Wouter Schakel</a>
48   * @param <G> gtu type data
49   */
50  public class ContourDataSource<G extends GtuDataInterface>
51  {
52  
53      // *************************
54      // *** GLOBAL PROPERTIES ***
55      // *************************
56  
57      /** Space granularity values. */
58      protected static final double[] DEFAULT_SPACE_GRANULARITIES = { 10, 20, 50, 100, 200, 500, 1000 };
59  
60      /** Index of the initial space granularity. */
61      protected static final int DEFAULT_SPACE_GRANULARITY_INDEX = 3;
62  
63      /** Time granularity values. */
64      protected static final double[] DEFAULT_TIME_GRANULARITIES = { 1, 2, 5, 10, 20, 30, 60, 120, 300, 600 };
65  
66      /** Index of the initial time granularity. */
67      protected static final int DEFAULT_TIME_GRANULARITY_INDEX = 3;
68  
69      /** Initial lower bound for the time scale. */
70      protected static final Time DEFAULT_LOWER_TIME_BOUND = Time.ZERO;
71  
72      /**
73       * Total kernel size relative to sigma and tau. This factor is determined through -log(1 - p) with p ~= 99%. This means that
74       * the cumulative exponential distribution has 99% at 5 times sigma or tau. Note that due to a coordinate change in the
75       * Adaptive Smoothing Method, the actual cumulative distribution is slightly different. Hence, this is just a heuristic.
76       */
77      private static final int KERNEL_FACTOR = 5;
78  
79      /** Spatial kernel size. Larger value may be used when using a large granularity. */
80      private static final Length SIGMA = Length.instantiateSI(300);
81  
82      /** Temporal kernel size. Larger value may be used when using a large granularity. */
83      private static final Duration TAU = Duration.instantiateSI(30);
84  
85      /** Maximum free flow propagation speed. */
86      private static final Speed MAX_C_FREE = new Speed(80.0, SpeedUnit.KM_PER_HOUR);
87  
88      /** Factor on speed limit to determine vc, the flip over speed between congestion and free flow. */
89      private static final double VC_FACRTOR = 0.8;
90  
91      /** Congestion propagation speed. */
92      private static final Speed C_CONG = new Speed(-18.0, SpeedUnit.KM_PER_HOUR);
93  
94      /** Delta v, speed transition region around threshold. */
95      private static final Speed DELTA_V = new Speed(10.0, SpeedUnit.KM_PER_HOUR);
96  
97      // *****************************
98      // *** CONTEXTUAL PROPERTIES ***
99      // *****************************
100 
101     /** Sampler data. */
102     private final SamplerData<G> samplerData;
103 
104     /** Update interval. */
105     private final Duration updateInterval;
106 
107     /** Delay so critical future events have occurred, e.g. GTU's next move's to extend trajectories. */
108     private final Duration delay;
109 
110     /** Path. */
111     private final GraphPath<KpiLaneDirection> path;
112 
113     /** Space axis. */
114     final Axis spaceAxis;
115 
116     /** Time axis. */
117     final Axis timeAxis;
118 
119     /** Registered plots. */
120     private Set<AbstractContourPlot<?>> plots = new LinkedHashSet<>();
121 
122     // *****************
123     // *** PLOT DATA ***
124     // *****************
125 
126     /** Total distance traveled per cell. */
127     private float[][] distance;
128 
129     /** Total time traveled per cell. */
130     private float[][] time;
131 
132     /** Data of other types. */
133     private final Map<ContourDataType<?, ?>, float[][]> additionalData = new LinkedHashMap<>();
134 
135     // ****************************
136     // *** SMOOTHING PROPERTIES ***
137     // ****************************
138 
139     /** Free flow propagation speed. */
140     private Speed cFree;
141 
142     /** Flip-over speed between congestion and free flow. */
143     private Speed vc;
144 
145     /** Smoothing filter. */
146     private EGTF egtf;
147 
148     /** Data stream for speed. */
149     private DataStream<Speed> speedStream;
150 
151     /** Data stream for travel time. */
152     private DataStream<Duration> travelTimeStream;
153 
154     /** Data stream for travel distance. */
155     private DataStream<Length> travelDistanceStream;
156 
157     /** Quantity for travel time. */
158     private final Quantity<Duration, double[][]> travelTimeQuantity = new Quantity<>("travel time", Converter.SI);
159 
160     /** Quantity for travel distance. */
161     private final Quantity<Length, double[][]> travelDistanceQuantity = new Quantity<>("travel distance", Converter.SI);
162 
163     /** Data streams for any additional data. */
164     private Map<ContourDataType<?, ?>, DataStream<?>> additionalStreams = new LinkedHashMap<>();
165 
166     // *****************************
167     // *** CONTINUITY PROPERTIES ***
168     // *****************************
169 
170     /** Updater for update times. */
171     private final GraphUpdater<Time> graphUpdater;
172 
173     /** Whether any command since or during the last update asks for a complete redo. */
174     private boolean redo = true;
175 
176     /** Time up to which to determine data. This is a multiple of the update interval, which is now, or recent on a redo. */
177     private Time toTime;
178 
179     /** Number of items that are ready. To return NaN values if not ready, and for operations between consecutive updates. */
180     private int readyItems = -1;
181 
182     /** Selected space granularity, to be set and taken on the next update. */
183     private Double desiredSpaceGranularity = null;
184 
185     /** Selected time granularity, to be set and taken on the next update. */
186     private Double desiredTimeGranularity = null;
187 
188     /** Whether to smooth data. */
189     private boolean smooth = false;
190 
191     // ********************
192     // *** CONSTRUCTORS ***
193     // ********************
194 
195     /**
196      * Constructor using default granularities.
197      * @param samplerData SamplerData&lt;G&gt;; sampler data
198      * @param path GraphPath&lt;KpiLaneDirection&gt;; path
199      */
200     public ContourDataSource(final SamplerData<G> samplerData, final GraphPath<KpiLaneDirection> path)
201     {
202         this(samplerData, Duration.instantiateSI(1.0), path, DEFAULT_SPACE_GRANULARITIES, DEFAULT_SPACE_GRANULARITY_INDEX,
203                 DEFAULT_TIME_GRANULARITIES, DEFAULT_TIME_GRANULARITY_INDEX, DEFAULT_LOWER_TIME_BOUND,
204                 AbstractPlot.DEFAULT_INITIAL_UPPER_TIME_BOUND);
205     }
206 
207     /**
208      * Constructor for non-default input.
209      * @param samplerData SamplerData&lt;G&gt;; sampler data
210      * @param delay Duration; delay so critical future events have occurred, e.g. GTU's next move's to extend trajectories
211      * @param path GraphPath&lt;KpiLaneDirection&gt;; path
212      * @param spaceGranularity double[]; granularity options for space dimension
213      * @param initSpaceIndex int; initial selected space granularity
214      * @param timeGranularity double[]; granularity options for time dimension
215      * @param initTimeIndex int; initial selected time granularity
216      * @param start Time; start time
217      * @param initialEnd Time; initial end time of plots, will be expanded if simulation time exceeds it
218      */
219     @SuppressWarnings("parameternumber")
220     public ContourDataSource(final SamplerData<G> samplerData, final Duration delay, final GraphPath<KpiLaneDirection> path,
221             final double[] spaceGranularity, final int initSpaceIndex, final double[] timeGranularity, final int initTimeIndex,
222             final Time start, final Time initialEnd)
223     {
224         this.samplerData = samplerData;
225         this.updateInterval = Duration.instantiateSI(timeGranularity[initTimeIndex]);
226         this.delay = delay;
227         this.path = path;
228         this.spaceAxis = new Axis(0.0, path.getTotalLength().si, spaceGranularity[initSpaceIndex], spaceGranularity);
229         this.timeAxis = new Axis(start.si, initialEnd.si, timeGranularity[initTimeIndex], timeGranularity);
230 
231         // get length-weighted mean speed limit from path to determine cFree and Vc for smoothing
232         this.cFree = Speed.min(path.getSpeedLimit(), MAX_C_FREE);
233         this.vc = Speed.min(path.getSpeedLimit().times(VC_FACRTOR), MAX_C_FREE);
234 
235         // setup updater to do the actual work in another thread
236         this.graphUpdater = new GraphUpdater<>("Contour Data Source worker", Thread.currentThread(), (t) -> update(t));
237     }
238 
239     // ************************************
240     // *** PLOT INTERFACING AND GETTERS ***
241     // ************************************
242 
243     /**
244      * Returns the sampler data for an {@code AbstractContourPlot} using this {@code ContourDataSource}.
245      * @return SamplerData&lt;G&gt;; the sampler
246      */
247     public final SamplerData<G> getSamplerData()
248     {
249         return this.samplerData;
250     }
251 
252     /**
253      * Returns the update interval for an {@code AbstractContourPlot} using this {@code ContourDataSource}.
254      * @return Duration; update interval
255      */
256     final Duration getUpdateInterval()
257     {
258         return this.updateInterval;
259     }
260 
261     /**
262      * Returns the delay for an {@code AbstractContourPlot} using this {@code ContourDataSource}.
263      * @return Duration; delay
264      */
265     final Duration getDelay()
266     {
267         return this.delay;
268     }
269 
270     /**
271      * Returns the path for an {@code AbstractContourPlot} using this {@code ContourDataSource}.
272      * @return GraphPath&lt;KpiLaneDirection&gt;; the path
273      */
274     final GraphPath<KpiLaneDirection> getPath()
275     {
276         return this.path;
277     }
278 
279     /**
280      * Register a contour plot to this data pool. The contour constructor will do this.
281      * @param contourPlot AbstractContourPlot&lt;?&gt;; contour plot
282      */
283     final void registerContourPlot(final AbstractContourPlot<?> contourPlot)
284     {
285         ContourDataType<?, ?> contourDataType = contourPlot.getContourDataType();
286         if (contourDataType != null)
287         {
288             this.additionalData.put(contourDataType, null);
289         }
290         this.plots.add(contourPlot);
291     }
292 
293     /**
294      * Returns the bin count.
295      * @param dimension Dimension; space or time
296      * @return int; bin count
297      */
298     final int getBinCount(final Dimension dimension)
299     {
300         return dimension.getAxis(this).getBinCount();
301     }
302 
303     /**
304      * Returns the size of a bin. Usually this is equal to the granularity, except for the last which is likely smaller.
305      * @param dimension Dimension; space or time
306      * @param item int; item number (cell number in contour plot)
307      * @return double; the size of a bin
308      */
309     final synchronized double getBinSize(final Dimension dimension, final int item)
310     {
311         int n = dimension.equals(Dimension.DISTANCE) ? getSpaceBin(item) : getTimeBin(item);
312         double[] ticks = dimension.getAxis(this).getTicks();
313         return ticks[n + 1] - ticks[n];
314     }
315 
316     /**
317      * Returns the value on the axis of an item.
318      * @param dimension Dimension; space or time
319      * @param item int; item number (cell number in contour plot)
320      * @return double; the value on the axis of this item
321      */
322     final double getAxisValue(final Dimension dimension, final int item)
323     {
324         if (dimension.equals(Dimension.DISTANCE))
325         {
326             return this.spaceAxis.getBinValue(getSpaceBin(item));
327         }
328         return this.timeAxis.getBinValue(getTimeBin(item));
329     }
330 
331     /**
332      * Returns the axis bin number of the given value.
333      * @param dimension Dimension; space or time
334      * @param value double; value
335      * @return int; axis bin number of the given value
336      */
337     final int getAxisBin(final Dimension dimension, final double value)
338     {
339         if (dimension.equals(Dimension.DISTANCE))
340         {
341             return this.spaceAxis.getValueBin(value);
342         }
343         return this.timeAxis.getValueBin(value);
344     }
345 
346     /**
347      * Returns the available granularities that a linked plot may use.
348      * @param dimension Dimension; space or time
349      * @return double[]; available granularities that a linked plot may use
350      */
351     @SuppressWarnings("synthetic-access")
352     public final double[] getGranularities(final Dimension dimension)
353     {
354         return dimension.getAxis(this).granularities;
355     }
356 
357     /**
358      * Returns the selected granularity that a linked plot should use.
359      * @param dimension Dimension; space or time
360      * @return double; granularity that a linked plot should use
361      */
362     @SuppressWarnings("synthetic-access")
363     public final double getGranularity(final Dimension dimension)
364     {
365         return dimension.getAxis(this).granularity;
366     }
367 
368     /**
369      * Called by {@code AbstractContourPlot} to update the time. This will invalidate the plot triggering a redraw.
370      * @param updateTime Time; current time
371      */
372     @SuppressWarnings("synthetic-access")
373     final synchronized void increaseTime(final Time updateTime)
374     {
375         if (updateTime.si > this.timeAxis.maxValue)
376         {
377             this.timeAxis.setMaxValue(updateTime.si);
378             for (AbstractContourPlot<?> plot : this.plots)
379             {
380                 plot.setUpperDomainBound(updateTime.si);
381             }
382         }
383         if (this.toTime == null || updateTime.si > this.toTime.si) // null at initialization
384         {
385             invalidate(updateTime);
386         }
387     }
388 
389     /**
390      * Sets the granularity of the plot. This will invalidate the plot triggering a redraw.
391      * @param dimension Dimension; space or time
392      * @param granularity double; granularity in space or time (SI unit)
393      */
394     public final synchronized void setGranularity(final Dimension dimension, final double granularity)
395     {
396         if (dimension.equals(Dimension.DISTANCE))
397         {
398             this.desiredSpaceGranularity = granularity;
399             for (AbstractContourPlot<?> contourPlot : ContourDataSource.this.plots)
400             {
401                 contourPlot.setSpaceGranularity(granularity);
402             }
403         }
404         else
405         {
406             this.desiredTimeGranularity = granularity;
407             for (AbstractContourPlot<?> contourPlot : ContourDataSource.this.plots)
408             {
409                 contourPlot.setUpdateInterval(Duration.instantiateSI(granularity));
410                 contourPlot.setTimeGranularity(granularity);
411             }
412         }
413         invalidate(null);
414     }
415 
416     /**
417      * Sets bi-linear interpolation enabled or disabled. This will invalidate the plot triggering a redraw.
418      * @param interpolate boolean; whether to enable interpolation
419      */
420     @SuppressWarnings("synthetic-access")
421     public final void setInterpolate(final boolean interpolate)
422     {
423         if (this.timeAxis.interpolate != interpolate)
424         {
425             synchronized (this)
426             {
427                 this.timeAxis.setInterpolate(interpolate);
428                 this.spaceAxis.setInterpolate(interpolate);
429                 for (AbstractContourPlot<?> contourPlot : ContourDataSource.this.plots)
430                 {
431                     contourPlot.setInterpolation(interpolate);
432                 }
433                 invalidate(null);
434             }
435         }
436     }
437 
438     /**
439      * Sets the adaptive smoothing enabled or disabled. This will invalidate the plot triggering a redraw.
440      * @param smooth boolean; whether to smooth the plor
441      */
442     public final void setSmooth(final boolean smooth)
443     {
444         if (this.smooth != smooth)
445         {
446             synchronized (this)
447             {
448                 this.smooth = smooth;
449                 for (AbstractContourPlot<?> contourPlot : ContourDataSource.this.plots)
450                 {
451                     System.out.println("not notifying plot " + contourPlot);
452                     // TODO work out what to do with this: contourPlot.setSmoothing(smooth);
453                 }
454                 invalidate(null);
455             }
456         }
457     }
458 
459     // ************************
460     // *** UPDATING METHODS ***
461     // ************************
462 
463     /**
464      * Each method that changes a setting such that the plot is no longer valid, should call this method after the setting was
465      * changed. If time is updated (increased), it should be given as input in to this method. The given time <i>should</i> be
466      * {@code null} if the plot is not valid for any other reason. In this case a full redo is initiated.
467      * <p>
468      * Every method calling this method should be {@code synchronized}, at least for the part where the setting is changed and
469      * this method is called. This method will in all cases add an update request to the updater, working in another thread. It
470      * will invoke method {@code update()}. That method utilizes a synchronized block to obtain all synchronization sensitive
471      * data, before starting the actual work.
472      * @param t Time; time up to which to show data
473      */
474     private synchronized void invalidate(final Time t)
475     {
476         if (t != null)
477         {
478             this.toTime = t;
479         }
480         else
481         {
482             this.redo = true;
483         }
484         if (this.toTime != null) // null at initialization
485         {
486             // either a later time was set, or time was null and a redo is required (will be picked up through the redo field)
487             // note that we cannot set {@code null}, hence we set the current to time, which may or may not have just changed
488             this.graphUpdater.offer(this.toTime);
489         }
490     }
491 
492     /**
493      * Heart of the data pool. This method is invoked regularly by the "DataPool worker" thread, as scheduled in a queue through
494      * planned updates at an interval, or by user action changing the plot appearance. No two invocations can happen at the same
495      * time, as the "DataPool worker" thread executes this method before the next update request from the queue is considered.
496      * <p>
497      * This method regularly checks conditions that indicate the update should be interrupted as for example a setting has
498      * changed and appearance should change. Whenever a new invalidation causes {@code redo = true}, this method can stop as the
499      * full data needs to be recalculated. This can be set by any change of e.g. granularity or smoothing, during the update.
500      * <p>
501      * During the data recalculation, a later update time may also trigger this method to stop, while the next update will pick
502      * up where this update left off. During the smoothing this method doesn't stop for an increased update time, as that will
503      * leave a gap in the smoothed data. Note that smoothing either smoothes all data (when {@code redo = true}), or only the
504      * last part that falls within the kernel.
505      * @param t Time; time up to which to show data
506      */
507     @SuppressWarnings({ "synthetic-access", "methodlength" })
508     private void update(final Time t)
509     {
510         Throw.when(this.plots.isEmpty(), IllegalStateException.class, "ContourDataSource is used, but not by a contour plot!");
511 
512         if (t.si < this.toTime.si)
513         {
514             // skip this update as new updates were commanded, while this update was in the queue, and a previous was running
515             return;
516         }
517 
518         /**
519          * This method is executed once at a time by the worker Thread. Many properties, such as the data, are maintained by
520          * this method. Other properties, which other methods can change, are read first in a synchronized block, while those
521          * methods are also synchronized.
522          */
523         boolean redo0;
524         boolean smooth0;
525         boolean interpolate0;
526         double timeGranularity;
527         double spaceGranularity;
528         double[] spaceTicks;
529         double[] timeTicks;
530         int fromSpaceIndex = 0;
531         int fromTimeIndex = 0;
532         int toTimeIndex;
533         double tFromEgtf = 0;
534         int nFromEgtf = 0;
535         synchronized (this)
536         {
537             // save local copies so commands given during this execution can change it for the next execution
538             redo0 = this.redo;
539             smooth0 = this.smooth;
540             interpolate0 = this.timeAxis.interpolate;
541             // timeTicks may be longer than the simulation time, so we use the time bin for the required time of data
542             if (this.desiredTimeGranularity != null)
543             {
544                 this.timeAxis.setGranularity(this.desiredTimeGranularity);
545                 this.desiredTimeGranularity = null;
546             }
547             if (this.desiredSpaceGranularity != null)
548             {
549                 this.spaceAxis.setGranularity(this.desiredSpaceGranularity);
550                 this.desiredSpaceGranularity = null;
551             }
552             timeGranularity = this.timeAxis.granularity;
553             spaceGranularity = this.spaceAxis.granularity;
554             spaceTicks = this.spaceAxis.getTicks();
555             timeTicks = this.timeAxis.getTicks();
556             if (!redo0)
557             {
558                 // remember where we started, readyItems will be updated but we need to know where we started during the update
559                 fromSpaceIndex = getSpaceBin(this.readyItems + 1);
560                 fromTimeIndex = getTimeBin(this.readyItems + 1);
561             }
562             toTimeIndex = ((int) (t.si / timeGranularity)) - (interpolate0 ? 0 : 1);
563             if (smooth0)
564             {
565                 // time of current bin - kernel size, get bin of that time, get time (middle) of that bin
566                 tFromEgtf = this.timeAxis.getBinValue(redo0 ? 0 : this.timeAxis.getValueBin(
567                         this.timeAxis.getBinValue(fromTimeIndex) - Math.max(TAU.si, timeGranularity / 2) * KERNEL_FACTOR));
568                 nFromEgtf = this.timeAxis.getValueBin(tFromEgtf);
569             }
570             // starting execution, so reset redo trigger which any next command may set to true if needed
571             this.redo = false;
572         }
573 
574         // reset upon a redo
575         if (redo0)
576         {
577             this.readyItems = -1;
578 
579             // init all data arrays
580             int nSpace = spaceTicks.length - 1;
581             int nTime = timeTicks.length - 1;
582             this.distance = new float[nSpace][nTime];
583             this.time = new float[nSpace][nTime];
584             for (ContourDataType<?, ?> contourDataType : this.additionalData.keySet())
585             {
586                 this.additionalData.put(contourDataType, new float[nSpace][nTime]);
587             }
588 
589             // setup the smoothing filter
590             if (smooth0)
591             {
592                 // create the filter
593                 this.egtf = new EGTF(C_CONG.si, this.cFree.si, DELTA_V.si, this.vc.si);
594 
595                 // create data source and its data streams for speed, distance traveled, time traveled, and additional
596                 DataSource generic = this.egtf.getDataSource("generic");
597                 generic.addStream(TypedQuantity.SPEED, Speed.instantiateSI(1.0), Speed.instantiateSI(1.0));
598                 generic.addStreamSI(this.travelTimeQuantity, 1.0, 1.0);
599                 generic.addStreamSI(this.travelDistanceQuantity, 1.0, 1.0);
600                 this.speedStream = generic.getStream(TypedQuantity.SPEED);
601                 this.travelTimeStream = generic.getStream(this.travelTimeQuantity);
602                 this.travelDistanceStream = generic.getStream(this.travelDistanceQuantity);
603                 for (ContourDataType<?, ?> contourDataType : this.additionalData.keySet())
604                 {
605                     this.additionalStreams.put(contourDataType, generic.addStreamSI(contourDataType.getQuantity(), 1.0, 1.0));
606                 }
607 
608                 // in principle we use sigma and tau, unless the data is so rough, we need more (granularity / 2).
609                 double tau2 = Math.max(TAU.si, timeGranularity / 2);
610                 double sigma2 = Math.max(SIGMA.si, spaceGranularity / 2);
611                 // for maximum space and time range, increase sigma and tau by KERNEL_FACTOR, beyond which both kernels diminish
612                 this.egtf.setGaussKernelSI(sigma2 * KERNEL_FACTOR, tau2 * KERNEL_FACTOR, sigma2, tau2);
613 
614                 // add listener to provide a filter status update and to possibly stop the filter when the plot is invalidated
615                 this.egtf.addListener(new EgtfListener()
616                 {
617                     /** {@inheritDoc} */
618                     @Override
619                     public void notifyProgress(final EgtfEvent event)
620                     {
621                         // check stop (explicit use of property, not locally stored value)
622                         if (ContourDataSource.this.redo)
623                         {
624                             // plots need to be redone
625                             event.interrupt(); // stop the EGTF
626                             setStatusLabel(" "); // reset status label so no "ASM at 12.6%" remains there
627                             return;
628                         }
629                         String status =
630                                 event.getProgress() >= 1.0 ? " " : String.format("ASM at %.2f%%", event.getProgress() * 100);
631                         setStatusLabel(status);
632                     }
633                 });
634             }
635         }
636 
637         // discard any data from smoothing if we are not smoothing
638         if (!smooth0)
639         {
640             // free for garbage collector to remove the data
641             this.egtf = null;
642             this.speedStream = null;
643             this.travelTimeStream = null;
644             this.travelDistanceStream = null;
645             this.additionalStreams.clear();
646         }
647 
648         // ensure capacity
649         for (int i = 0; i < this.distance.length; i++)
650         {
651             this.distance[i] = GraphUtil.ensureCapacity(this.distance[i], toTimeIndex + 1);
652             this.time[i] = GraphUtil.ensureCapacity(this.time[i], toTimeIndex + 1);
653             for (float[][] additional : this.additionalData.values())
654             {
655                 additional[i] = GraphUtil.ensureCapacity(additional[i], toTimeIndex + 1);
656             }
657         }
658 
659         // loop cells to update data
660         for (int j = fromTimeIndex; j <= toTimeIndex; j++)
661         {
662             Time tFrom = Time.instantiateSI(timeTicks[j]);
663             Time tTo = Time.instantiateSI(timeTicks[j + 1]);
664 
665             // we never filter time, time always spans the entire simulation, it will contain tFrom till tTo
666 
667             for (int i = fromSpaceIndex; i < spaceTicks.length - 1; i++)
668             {
669                 // when interpolating, set the first row and column to NaN so colors representing 0 do not mess up the edges
670                 if ((j == 0 || i == 0) && interpolate0)
671                 {
672                     this.distance[i][j] = Float.NaN;
673                     this.time[i][j] = Float.NaN;
674                     this.readyItems++;
675                     continue;
676                 }
677 
678                 // only first loop with offset, later in time, none of the space was done in the previous update
679                 fromSpaceIndex = 0;
680                 Length xFrom = Length.instantiateSI(spaceTicks[i]);
681                 Length xTo = Length.instantiateSI(Math.min(spaceTicks[i + 1], this.path.getTotalLength().si));
682 
683                 // init cell data
684                 double totalDistance = 0.0;
685                 double totalTime = 0.0;
686                 Map<ContourDataType<?, ?>, Object> additionalIntermediate = new LinkedHashMap<>();
687                 for (ContourDataType<?, ?> contourDataType : this.additionalData.keySet())
688                 {
689                     additionalIntermediate.put(contourDataType, contourDataType.identity());
690                 }
691 
692                 // aggregate series in cell
693                 for (int series = 0; series < this.path.getNumberOfSeries(); series++)
694                 {
695                     // obtain trajectories
696                     List<TrajectoryGroup<?>> trajectories = new ArrayList<>();
697                     for (Section<KpiLaneDirection> section : getPath().getSections())
698                     {
699                         TrajectoryGroup<?> trajectoryGroup = this.samplerData.getTrajectoryGroup(section.getSource(series));
700                         if (null == trajectoryGroup)
701                         {
702                             CategoryLogger.always().error("trajectoryGroup {} is null", series);
703                         }
704                         trajectories.add(trajectoryGroup);
705                     }
706 
707                     // filter groups (lanes) that overlap with section i
708                     List<TrajectoryGroup<?>> included = new ArrayList<>();
709                     List<Length> xStart = new ArrayList<>();
710                     List<Length> xEnd = new ArrayList<>();
711                     for (int k = 0; k < trajectories.size(); k++)
712                     {
713                         TrajectoryGroup<?> trajectoryGroup = trajectories.get(k);
714                         KpiLaneDirection lane = trajectoryGroup.getLaneDirection();
715                         Length startDistance = this.path.getStartDistance(this.path.get(k));
716                         if (startDistance.si + this.path.get(k).getLength().si > spaceTicks[i]
717                                 && startDistance.si < spaceTicks[i + 1])
718                         {
719                             included.add(trajectoryGroup);
720                             double scale = this.path.get(k).getLength().si / lane.getLaneData().getLength().si;
721                             // divide by scale, so we go from base length to section length
722                             xStart.add(Length.max(xFrom.minus(startDistance).divide(scale), Length.ZERO));
723                             xEnd.add(Length.min(xTo.minus(startDistance).divide(scale),
724                                     trajectoryGroup.getLaneDirection().getLaneData().getLength()));
725                         }
726                     }
727 
728                     // accumulate distance and time of trajectories
729                     for (int k = 0; k < included.size(); k++)
730                     {
731                         TrajectoryGroup<?> trajectoryGroup = included.get(k);
732                         for (Trajectory<?> trajectory : trajectoryGroup.getTrajectories())
733                         {
734                             // for optimal operations, we first do quick-reject based on time, as by far most trajectories
735                             // during the entire time span of simulation will not apply to a particular cell in space-time
736                             if (GraphUtil.considerTrajectory(trajectory, tFrom, tTo))
737                             {
738                                 // again for optimal operations, we use a space-time view only (we don't need more)
739                                 SpaceTimeView spaceTimeView;
740                                 try
741                                 {
742                                     spaceTimeView = trajectory.getSpaceTimeView(xStart.get(k), xEnd.get(k), tFrom, tTo);
743                                 }
744                                 catch (IllegalArgumentException exception)
745                                 {
746                                     CategoryLogger.always().debug(exception,
747                                             "Unable to generate space-time view from x = {} to {} and t = {} to {}.",
748                                             xStart.get(k), xEnd.get(k), tFrom, tTo);
749                                     continue;
750                                 }
751                                 totalDistance += spaceTimeView.getDistance().si;
752                                 totalTime += spaceTimeView.getTime().si;
753                             }
754                         }
755                     }
756 
757                     // loop and set any additional data
758                     for (ContourDataType<?, ?> contourDataType : this.additionalData.keySet())
759                     {
760                         addAdditional(additionalIntermediate, contourDataType, included, xStart, xEnd, tFrom, tTo);
761                     }
762 
763                 }
764 
765                 // scale values to the full size of a cell on a single lane, so the EGTF is interpolating comparable values
766                 double norm = spaceGranularity / (xTo.si - xFrom.si) / this.path.getNumberOfSeries();
767                 totalDistance *= norm;
768                 totalTime *= norm;
769                 this.distance[i][j] = (float) totalDistance;
770                 this.time[i][j] = (float) totalTime;
771                 for (ContourDataType<?, ?> contourDataType : this.additionalData.keySet())
772                 {
773                     this.additionalData.get(contourDataType)[i][j] =
774                             finalizeAdditional(additionalIntermediate, contourDataType);
775                 }
776 
777                 // add data to EGTF (yes it's a copy, but our local data will be overwritten with smoothed data later)
778                 if (smooth0)
779                 {
780                     // center of cell
781                     double xDat = (xFrom.si + xTo.si) / 2.0;
782                     double tDat = (tFrom.si + tTo.si) / 2.0;
783                     // speed data is implicit as totalDistance/totalTime, but the EGTF needs it explicitly
784                     this.egtf.addPointDataSI(this.speedStream, xDat, tDat, totalDistance / totalTime);
785                     this.egtf.addPointDataSI(this.travelDistanceStream, xDat, tDat, totalDistance);
786                     this.egtf.addPointDataSI(this.travelTimeStream, xDat, tDat, totalTime);
787                     for (ContourDataType<?, ?> contourDataType : this.additionalStreams.keySet())
788                     {
789                         ContourDataSource.this.egtf.addPointDataSI(
790                                 ContourDataSource.this.additionalStreams.get(contourDataType), xDat, tDat,
791                                 this.additionalData.get(contourDataType)[i][j]);
792                     }
793                 }
794 
795                 // check stop (explicit use of properties, not locally stored values)
796                 if (this.redo)
797                 {
798                     // plots need to be redone, or time has increased meaning that a next call may continue further just as well
799                     return;
800                 }
801 
802                 // one more item is ready for plotting
803                 this.readyItems++;
804             }
805 
806             // notify changes for every time slice
807             this.plots.forEach((plot) -> plot.notifyPlotChange());
808         }
809 
810         // smooth all data that is as old as our kernel includes (or all data on a redo)
811         if (smooth0)
812         {
813             Set<Quantity<?, ?>> quantities = new LinkedHashSet<>();
814             quantities.add(this.travelDistanceQuantity);
815             quantities.add(this.travelTimeQuantity);
816             for (ContourDataType<?, ?> contourDataType : this.additionalData.keySet())
817             {
818                 quantities.add(contourDataType.getQuantity());
819             }
820             Filter filter = this.egtf.filterFastSI(spaceTicks[0] + 0.5 * spaceGranularity, spaceGranularity,
821                     spaceTicks[0] + (-1.5 + spaceTicks.length) * spaceGranularity, tFromEgtf, timeGranularity, t.si,
822                     quantities.toArray(new Quantity<?, ?>[quantities.size()]));
823             if (filter != null) // null if interrupted
824             {
825                 overwriteSmoothed(this.distance, nFromEgtf, filter.getSI(this.travelDistanceQuantity));
826                 overwriteSmoothed(this.time, nFromEgtf, filter.getSI(this.travelTimeQuantity));
827                 for (ContourDataType<?, ?> contourDataType : this.additionalData.keySet())
828                 {
829                     overwriteSmoothed(this.additionalData.get(contourDataType), nFromEgtf,
830                             filter.getSI(contourDataType.getQuantity()));
831                 }
832                 this.plots.forEach((plot) -> plot.notifyPlotChange());
833             }
834         }
835     }
836 
837     /**
838      * Add additional data to stored intermediate result.
839      * @param additionalIntermediate Map&lt;ContourDataType&lt;?, ?&gt;, Object&gt;; intermediate storage map
840      * @param contourDataType ContourDataType&lt;?, ?&gt;; additional data type
841      * @param included List&lt;TrajectoryGroup&lt;?&gt;&gt;; trajectories
842      * @param xStart List&lt;Length&gt;; start distance per trajectory group
843      * @param xEnd List&lt;Length&gt;; end distance per trajectory group
844      * @param tFrom Time; start time
845      * @param tTo Time; end time
846      * @param <I> intermediate data type
847      */
848     @SuppressWarnings("unchecked")
849     private <I> void addAdditional(final Map<ContourDataType<?, ?>, Object> additionalIntermediate,
850             final ContourDataType<?, ?> contourDataType, final List<TrajectoryGroup<?>> included, final List<Length> xStart,
851             final List<Length> xEnd, final Time tFrom, final Time tTo)
852     {
853         additionalIntermediate.put(contourDataType, ((ContourDataType<?, I>) contourDataType)
854                 .processSeries((I) additionalIntermediate.get(contourDataType), included, xStart, xEnd, tFrom, tTo));
855     }
856 
857     /**
858      * Stores a finalized result for additional data.
859      * @param additionalIntermediate Map&lt;ContourDataType&lt;?, ?&gt;, Object&gt;; intermediate storage map
860      * @param contourDataType ContourDataType&lt;?, ?&gt;; additional data type
861      * @return float; finalized results for a cell
862      * @param <I> intermediate data type
863      */
864     @SuppressWarnings("unchecked")
865     private <I> float finalizeAdditional(final Map<ContourDataType<?, ?>, Object> additionalIntermediate,
866             final ContourDataType<?, ?> contourDataType)
867     {
868         return ((ContourDataType<?, I>) contourDataType).finalize((I) additionalIntermediate.get(contourDataType)).floatValue();
869     }
870 
871     /**
872      * Helper method to fill smoothed data in to raw data.
873      * @param raw float[][]; the raw unsmoothed data
874      * @param rawCol int; column from which onward to fill smoothed data in to the raw data which is used for plotting
875      * @param smoothed double[][]; smoothed data returned by {@code EGTF}
876      */
877     private void overwriteSmoothed(final float[][] raw, final int rawCol, final double[][] smoothed)
878     {
879         for (int i = 0; i < raw.length; i++)
880         {
881             // can't use System.arraycopy due to float vs double
882             for (int j = 0; j < smoothed[i].length; j++)
883             {
884                 raw[i][j + rawCol] = (float) smoothed[i][j];
885             }
886         }
887     }
888 
889     /**
890      * Helper method used by an {@code EgtfListener} to present the filter progress.
891      * @param status String; progress report
892      */
893     private void setStatusLabel(final String status)
894     {
895         for (AbstractContourPlot<?> plot : ContourDataSource.this.plots)
896         {
897             // TODO what shall we do this this? plot.setStatusLabel(status);
898         }
899     }
900 
901     // ******************************
902     // *** DATA RETRIEVAL METHODS ***
903     // ******************************
904 
905     /**
906      * Returns the speed of the cell pertaining to plot item.
907      * @param item int; plot item
908      * @return double; speed of the cell, calculated as 'total distance' / 'total space'.
909      */
910     public double getSpeed(final int item)
911     {
912         if (item > this.readyItems)
913         {
914             return Double.NaN;
915         }
916         return getTotalDistance(item) / getTotalTime(item);
917     }
918 
919     /**
920      * Returns the total distance traveled in the cell pertaining to plot item.
921      * @param item int; plot item
922      * @return double; total distance traveled in the cell
923      */
924     public double getTotalDistance(final int item)
925     {
926         if (item > this.readyItems)
927         {
928             return Double.NaN;
929         }
930         return this.distance[getSpaceBin(item)][getTimeBin(item)];
931     }
932 
933     /**
934      * Returns the total time traveled in the cell pertaining to plot item.
935      * @param item int; plot item
936      * @return double; total time traveled in the cell
937      */
938     public double getTotalTime(final int item)
939     {
940         if (item > this.readyItems)
941         {
942             return Double.NaN;
943         }
944         return this.time[getSpaceBin(item)][getTimeBin(item)];
945     }
946 
947     /**
948      * Returns data of the given {@code ContourDataType} for a specific item.
949      * @param item int; plot item
950      * @param contourDataType ContourDataType&lt;?, ?&gt;; contour data type
951      * @return data of the given {@code ContourDataType} for a specific item
952      */
953     public double get(final int item, final ContourDataType<?, ?> contourDataType)
954     {
955         if (item > this.readyItems)
956         {
957             return Double.NaN;
958         }
959         return this.additionalData.get(contourDataType)[getSpaceBin(item)][getTimeBin(item)];
960     }
961 
962     /**
963      * Returns the time bin number of the item.
964      * @param item int; item number
965      * @return int; time bin number of the item
966      */
967     private int getTimeBin(final int item)
968     {
969         Throw.when(item < 0 || item >= this.spaceAxis.getBinCount() * this.timeAxis.getBinCount(),
970                 IndexOutOfBoundsException.class, "Item out of range");
971         return item / this.spaceAxis.getBinCount();
972     }
973 
974     /**
975      * Returns the space bin number of the item.
976      * @param item int; item number
977      * @return int; space bin number of the item
978      */
979     private int getSpaceBin(final int item)
980     {
981         return item % this.spaceAxis.getBinCount();
982     }
983 
984     // **********************
985     // *** HELPER CLASSES ***
986     // **********************
987 
988     /**
989      * Enum to refer to either the distance or time axis.
990      * <p>
991      * Copyright (c) 2013-2020 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved.
992      * <br>
993      * BSD-style license. See <a href="http://opentrafficsim.org/node/13">OpenTrafficSim License</a>.
994      * <p>
995      * @version $Revision$, $LastChangedDate$, by $Author$, initial version 10 okt. 2018 <br>
996      * @author <a href="http://www.tbm.tudelft.nl/averbraeck">Alexander Verbraeck</a>
997      * @author <a href="http://www.tudelft.nl/pknoppers">Peter Knoppers</a>
998      * @author <a href="http://www.transport.citg.tudelft.nl">Wouter Schakel</a>
999      */
1000     public enum Dimension
1001     {
1002         /** Distance axis. */
1003         DISTANCE
1004         {
1005             /** {@inheritDoc} */
1006             @Override
1007             protected Axis getAxis(final ContourDataSource<?> dataPool)
1008             {
1009                 return dataPool.spaceAxis;
1010             }
1011         },
1012 
1013         /** Time axis. */
1014         TIME
1015         {
1016             /** {@inheritDoc} */
1017             @Override
1018             protected Axis getAxis(final ContourDataSource<?> dataPool)
1019             {
1020                 return dataPool.timeAxis;
1021             }
1022         };
1023 
1024         /**
1025          * Returns the {@code Axis} object.
1026          * @param dataPool ContourDataSource&lt;?&gt;; data pool
1027          * @return Axis; axis
1028          */
1029         protected abstract Axis getAxis(ContourDataSource<?> dataPool);
1030     }
1031 
1032     /**
1033      * Class to store and determine axis information such as granularity, ticks, and range.
1034      * <p>
1035      * Copyright (c) 2013-2020 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved.
1036      * <br>
1037      * BSD-style license. See <a href="http://opentrafficsim.org/node/13">OpenTrafficSim License</a>.
1038      * <p>
1039      * @version $Revision$, $LastChangedDate$, by $Author$, initial version 10 okt. 2018 <br>
1040      * @author <a href="http://www.tbm.tudelft.nl/averbraeck">Alexander Verbraeck</a>
1041      * @author <a href="http://www.tudelft.nl/pknoppers">Peter Knoppers</a>
1042      * @author <a href="http://www.transport.citg.tudelft.nl">Wouter Schakel</a>
1043      */
1044     static class Axis
1045     {
1046         /** Minimum value. */
1047         private final double minValue;
1048 
1049         /** Maximum value. */
1050         private double maxValue;
1051 
1052         /** Selected granularity. */
1053         private double granularity;
1054 
1055         /** Possible granularities. */
1056         private final double[] granularities;
1057 
1058         /** Whether the data pool is set to interpolate. */
1059         private boolean interpolate = true;
1060 
1061         /** Tick values. */
1062         private double[] ticks;
1063 
1064         /**
1065          * Constructor.
1066          * @param minValue double; minimum value
1067          * @param maxValue double; maximum value
1068          * @param granularity double; initial granularity
1069          * @param granularities double[]; possible granularities
1070          */
1071         Axis(final double minValue, final double maxValue, final double granularity, final double[] granularities)
1072         {
1073             this.minValue = minValue;
1074             this.maxValue = maxValue;
1075             this.granularity = granularity;
1076             this.granularities = granularities;
1077         }
1078 
1079         /**
1080          * Sets the maximum value.
1081          * @param maxValue double; maximum value
1082          */
1083         void setMaxValue(final double maxValue)
1084         {
1085             if (this.maxValue != maxValue)
1086             {
1087                 this.maxValue = maxValue;
1088                 this.ticks = null;
1089             }
1090         }
1091 
1092         /**
1093          * Sets the granularity.
1094          * @param granularity double; granularity
1095          */
1096         void setGranularity(final double granularity)
1097         {
1098             if (this.granularity != granularity)
1099             {
1100                 this.granularity = granularity;
1101                 this.ticks = null;
1102             }
1103         }
1104 
1105         /**
1106          * Returns the ticks, which are calculated if needed.
1107          * @return double[]; ticks
1108          */
1109         double[] getTicks()
1110         {
1111             if (this.ticks == null)
1112             {
1113                 int n = getBinCount() + 1;
1114                 this.ticks = new double[n];
1115                 int di = this.interpolate ? 1 : 0;
1116                 for (int i = 0; i < n; i++)
1117                 {
1118                     if (i == n - 1)
1119                     {
1120                         this.ticks[i] = Math.min((i - di) * this.granularity, this.maxValue);
1121                     }
1122                     else
1123                     {
1124                         this.ticks[i] = (i - di) * this.granularity;
1125                     }
1126                 }
1127             }
1128             return this.ticks;
1129         }
1130 
1131         /**
1132          * Calculates the number of bins.
1133          * @return int; number of bins
1134          */
1135         int getBinCount()
1136         {
1137             return (int) Math.ceil((this.maxValue - this.minValue) / this.granularity) + (this.interpolate ? 1 : 0);
1138         }
1139 
1140         /**
1141          * Calculates the center value of a bin.
1142          * @param bin int; bin number
1143          * @return double; center value of the bin
1144          */
1145         double getBinValue(final int bin)
1146         {
1147             return this.minValue + (0.5 + bin - (this.interpolate ? 1 : 0)) * this.granularity;
1148         }
1149 
1150         /**
1151          * Looks up the bin number of the value.
1152          * @param value double; value
1153          * @return int; bin number
1154          */
1155         int getValueBin(final double value)
1156         {
1157             getTicks();
1158             if (value > this.ticks[this.ticks.length - 1])
1159             {
1160                 return this.ticks.length - 1;
1161             }
1162             int i = 0;
1163             while (i < this.ticks.length - 1 && this.ticks[i + 1] < value + 1e-9)
1164             {
1165                 i++;
1166             }
1167             return i;
1168         }
1169 
1170         /**
1171          * Sets interpolation, important is it required the data to have an additional row or column.
1172          * @param interpolate boolean; interpolation
1173          */
1174         void setInterpolate(final boolean interpolate)
1175         {
1176             if (this.interpolate != interpolate)
1177             {
1178                 this.interpolate = interpolate;
1179                 this.ticks = null;
1180             }
1181         }
1182 
1183         /**
1184          * Retrieve the interpolate flag.
1185          * @return boolean; true if interpolation is on; false if interpolation is off
1186          */
1187         public boolean isInterpolate()
1188         {
1189             return this.interpolate;
1190         }
1191 
1192         /** {@inheritDoc} */
1193         @Override
1194         public String toString()
1195         {
1196             return "Axis [minValue=" + this.minValue + ", maxValue=" + this.maxValue + ", granularity=" + this.granularity
1197                     + ", granularities=" + Arrays.toString(this.granularities) + ", interpolate=" + this.interpolate
1198                     + ", ticks=" + Arrays.toString(this.ticks) + "]";
1199         }
1200 
1201     }
1202 
1203     /**
1204      * Interface for data types of which a contour plot can be made. Using this class, the data pool can determine and store
1205      * cell values for a variable set of additional data types (besides total distance, total time and speed).
1206      * <p>
1207      * Copyright (c) 2013-2020 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved.
1208      * <br>
1209      * BSD-style license. See <a href="http://opentrafficsim.org/node/13">OpenTrafficSim License</a>.
1210      * <p>
1211      * @version $Revision$, $LastChangedDate$, by $Author$, initial version 10 okt. 2018 <br>
1212      * @author <a href="http://www.tbm.tudelft.nl/averbraeck">Alexander Verbraeck</a>
1213      * @author <a href="http://www.tudelft.nl/pknoppers">Peter Knoppers</a>
1214      * @author <a href="http://www.transport.citg.tudelft.nl">Wouter Schakel</a>
1215      * @param <Z> value type
1216      * @param <I> intermediate data type
1217      */
1218     public interface ContourDataType<Z extends Number, I>
1219     {
1220         /**
1221          * Returns the initial value for intermediate result.
1222          * @return I, initial intermediate value
1223          */
1224         I identity();
1225 
1226         /**
1227          * Calculate value from provided trajectories that apply to a single grid cell on a single series (lane).
1228          * @param intermediate I; intermediate value of previous series, starts as the identity
1229          * @param trajectories List&lt;TrajectoryGroup&lt;?&gt;&gt;; trajectories, all groups overlap the requested space-time
1230          * @param xFrom List&lt;Length&gt;; start location of cell on the section
1231          * @param xTo List&lt;Length&gt;; end location of cell on the section.
1232          * @param tFrom Time; start time of cell
1233          * @param tTo Time; end time of cell
1234          * @return I; intermediate value
1235          */
1236         I processSeries(I intermediate, List<TrajectoryGroup<?>> trajectories, List<Length> xFrom, List<Length> xTo, Time tFrom,
1237                 Time tTo);
1238 
1239         /**
1240          * Returns the final value of the intermediate result after all lanes.
1241          * @param intermediate I; intermediate result after all lanes
1242          * @return Z; final value
1243          */
1244         Z finalize(I intermediate);
1245 
1246         /**
1247          * Returns the quantity that is being plotted on the z-axis for the EGTF filter.
1248          * @return Quantity&lt;Z, ?&gt;; quantity that is being plotted on the z-axis for the EGTF filter
1249          */
1250         Quantity<Z, ?> getQuantity();
1251     }
1252 
1253     /** {@inheritDoc} */
1254     @Override
1255     public String toString()
1256     {
1257         return "ContourDataSource [samplerData=" + this.samplerData + ", updateInterval=" + this.updateInterval + ", delay="
1258                 + this.delay + ", path=" + this.path + ", spaceAxis=" + this.spaceAxis + ", timeAxis=" + this.timeAxis
1259                 + ", plots=" + this.plots + ", distance=" + Arrays.toString(this.distance) + ", time="
1260                 + Arrays.toString(this.time) + ", additionalData=" + this.additionalData + ", smooth=" + this.smooth
1261                 + ", cFree=" + this.cFree + ", vc=" + this.vc + ", egtf=" + this.egtf + ", speedStream=" + this.speedStream
1262                 + ", travelTimeStream=" + this.travelTimeStream + ", travelDistanceStream=" + this.travelDistanceStream
1263                 + ", travelTimeQuantity=" + this.travelTimeQuantity + ", travelDistanceQuantity=" + this.travelDistanceQuantity
1264                 + ", additionalStreams=" + this.additionalStreams + ", graphUpdater=" + this.graphUpdater + ", redo="
1265                 + this.redo + ", toTime=" + this.toTime + ", readyItems=" + this.readyItems + ", desiredSpaceGranularity="
1266                 + this.desiredSpaceGranularity + ", desiredTimeGranularity=" + this.desiredTimeGranularity + "]";
1267     }
1268 
1269 }